Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Numerical investigation of the behaviour and performance of ships advancing through restricted shallow waters

Terziev, Momchil and Tezdogan, Tahsin and Oguz, Elif and Gourlay, Tim and Demirel, Yigit Kemal and Incecik, Atilla (2018) Numerical investigation of the behaviour and performance of ships advancing through restricted shallow waters. Journal of Fluids and Structures, 76. 185–215. ISSN 0889-9746

[img]
Preview
Text (Terziev-etal-JFS-2018-behaviour-and-performance-of-ships-advancing-through-restricted-shallow-waters)
Terziev_etal_JFS_2018_behaviour_and_performance_of_ships_advancing_through_restricted_shallow_waters.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (6MB)| Preview

    Abstract

    Upon entering shallow waters, ships experience a number of changes due to the hydrodynamic interaction between the hull and the seabed. Some of these changes are expressed in a pronounced increase in sinkage, trim and resistance. In this paper, a numerical study is performed on the Duisburg Test Case (DTC) container ship using Computational Fluid Dynamics (CFD), the Slender-Body theory and various empirical methods. A parametric comparison of the behaviour and performance estimation techniques in shallow waters for varying channel cross-sections and ship speeds is performed. The main objective of this research is to quantify the effect a step in the channel topography on ship sinkage, trim and resistance. Significant differences are shown in the computed parameters for the DTC advancing through dredged channels and conventional shallow water topographies. The different techniques employed show good agreement, especially in the low speed range.