
This version is available at https://strathprints.strath.ac.uk/62051/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Detection of Safety Signals in Randomised Controlled Trials using Groupings

Raymond Carragher
University of Strathclyde

Supervisors: Prof. Chris Robertson, Dr. Ian Bradbury (Frontier Science Scotland Ltd.), Dr. David Young.

1. Introduction

Many different types of adverse event are routinely recorded during clinical trials. The statistical analysis of this data may need to take into account:

1. potential multiple comparison issues;
2. low power - effect sizes of adverse events in clinical trials are generally small.

The use of methods which use possible groupings of adverse events (e.g. by System Organ Class) in their statistical analyses may result in an increase in the power to detect adverse event incidence while maintaining control over the Type-I error rate.

2. System Organ Class

Medical dictionaries (e.g. MedDRA) provide groupings of adverse events by System Organ Class (SOC).

Gastrointestinal Disorders
- Diarrhoea
- Nausea
- Vomiting
- Abdominal pain
- Stomatitis
- ...
- Haematemesis

3. Methods

Berry and Berry (2004): A Binomial Bayesian three-level hierarchical model where the increase in log-odds (θ_{bj}) of the occurrence of an adverse event under treatment is modelled as a mixture distribution:

$$X_{bj} \sim Bin(N_C, c_{bj})$$
$$Y_{bj} \sim Bin(N_T, t_{bj})$$

$$\theta_{bj} \sim \pi_b I_{[\theta_{bj}=0]} + (1 - \pi_b) I_{[\theta_{bj} \neq 0]} N(\mu_{\theta b}, \sigma_{\theta b}^2)$$

The system organ classes and adverse events are indexed by b and j respectively, and each system organ class has a common mean and variance.

Double False Discovery Rate (DFDR) (2012): Application of the False Discovery Rate at both the System Organ Class and individual adverse event level.

Group Benjamini-Hochberg (GBH) (2010): A p-value weighted application of the False Discovery Rate where groupings of hypotheses are used to calculate the weightings.

4. Clinical Trial Safety Study

23 SOCs, 497 types of adverse event. Diarrhoea and Rash were expected adverse events based on Phase I/II studies. At the end of the trial 10 adverse events were significant at 5% level for a Fisher exact test comparing treatment with control.

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>p-value</th>
<th>Berry and Berry model¶</th>
<th>DFDR¤</th>
<th>GBH¤</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea</td>
<td><0.001*</td>
<td>1.000</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Rash</td>
<td><0.001*</td>
<td>1.000</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>0.004</td>
<td>0.980</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Dryopsia</td>
<td>0.004</td>
<td>0.986</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Dermatitis acnesiform</td>
<td>0.008</td>
<td>0.967</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>0.035</td>
<td>0.892</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Localised infection</td>
<td>0.038</td>
<td>0.772</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>0.039</td>
<td>0.905</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Back pain</td>
<td>0.047</td>
<td>0.879</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Nail disorder</td>
<td>0.049</td>
<td>0.941</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

* Remains significant after the application of the Bonferroni correction.
¶ Posterior probability that the change in log-odds of the occurrence of the adverse event on the treatment arm is positive.
¤ Flagged as significant by the procedure at the 5% or 10% significance level (Y = yes, N = no).

Under the Berry and Berry model 5 adverse events have posterior probability exceeding 0.95 of increased treatment log-odds, compared to 2 adverse events flagged by a standard analysis.

5. Extended Methods – Interim Analyses

The Berry and Berry model may be extended for use at interim analyses by dividing the trial duration into intervals and considering both the time in study of the patients and the number of adverse events that occur over each interval of the trial. If the trial is split into H intervals, with B SOCs, k_b adverse events in SOC b, and C different covariate patterns among the data, then the data model is:

$$X_{bjh}^{(c)} \sim \text{Poisson}(\lambda_{bjh}^{(c)}, \tau_{bjh}^{(c)})$$
$$\tau_{bjh} = \sum_{i \in R_{bjh}^{(c)}} t_{ih}$$

$$\log \lambda_{bjh}^{(c)} = \gamma_{bjh} + x(c)\theta_{bjh}$$

where $R_{bjh}^{(c)}$ is the set of patients with covariate pattern c at risk of the jth adverse event in SOC b at the start of interval h, and t_{ih} is the time patient i spends in interval h.

6. Software Implementation

All of the methods are implemented in the R package c212 (https://CRAN.R-project.org/package=c212).

References