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Abstract—One of the key challenges for state of the art radio
systems is enabling efficient utilisation of the Radio Frequency
(RF) spectrum. Licensed frequency bands are often under-utilised
in both time and geographical location and thus the opportunity
exists for secondary users to transmit in these bands, provided
that they do not interfere significantly with the operation of the
primary licensed user. A proposed method for exploiting this
opportunity is Cognitive Radio (CR) wherein the secondary user
is able to modify its transmissions based on observation of the
operating RF environment. Orthogonal Frequency Division Mul-
tiplexing (OFDM) is the enabling technology for many modern
communications standards such as IEEE 802.11a (WiFi) and 4G
Long Term Evolution (LTE). Therefore, facilitating robust and
cost effective detection of OFDM signals is a key problem for the
design of secondary user CR systems. In this paper, we derive
and assess the performance of a low complexity detection scheme
that exploits the inherent cyclostationarity of OFDM signals. We
then present details of its implementation on a Xilinx Artix 7
FPGA and compare the resource cost of the proposed detector
with another low complexity detection algorithm found in the
literature.

I. INTRODUCTION

OFDM is a multi-carrier modulation method that divides
the available spectrum into a number of parallel narrowband
sub-carriers. It is noted for its robust performance in multipath
channels and the fact that modulation and demodulation can be
performed efficiently in hardware through the use of the Fast
Fourier Transform (FFT) algorithm. Due to these benefits, it
has been widely adopted as part of modern communications
standards such as LTE and the IEEE 802.11 family of stan-
dards. A common feature for all of these systems is a Cyclic
Prefix (CP), that consists of a portion of the OFDM symbol
which is copied from the end of the symbol and appended at
the front of the symbol. This provides a level of immunity to
Inter Block Interference (IBI) between OFDM symbols and
significantly simplifies the process of channel equalisation in
the receiver.

The CP is also a beneficial feature for the detection of
OFDM signals in the sense that it makes the OFDM signal
cyclcostationary. A signal is said to be wide-sense cyclosta-
tionary if its statistics are periodic with some fundamental
period. In the case of OFDM, due to the presence of a CP,
the autocorrelation function is periodic. Therefore, OFDM
signals can be detected by testing for the presence of cy-
clostationarity. The authors in [1] presented an algorithm
for detection of cyclostationarity using a Likelihood Ratio

Test (LRT). This has since been modified and implemented
using FPGAs as described by the authors in [2]. Similarly,
in a previous paper we described an implementation of the
same algorithm and showed how its hardware cost could be
reduced by re-arranging the calculation to avoid division [3].
In [4], the authors describe a sub-optimal detection method
that calculates the ratio of the squared magnitude of the Cyclic
Autocorrelation Function (CAF) computed at a known cyclic
frequency to the squared magnitude of the CAF calculated
at a known non-cyclic frequency. The performance of this
detection scheme is reduced when compared to the LRT
algorithm but it uses a significantly simplified test statistic.
Similarly, in [5], the authors suggest a detector which applies
the spatial sign function to the input data, also leading to a
simpler test statistic.

In this paper, we introduce a low complexity cyclostationary
detection algorithm that is shown to perform well in compar-
ison to the detectors in [3], [4] and [5]. We then implement
the proposed detector on a Xilinx Artix 7 FPGA device and
compare its resource cost and performance to an implemen-
tation of the detector in [4]. Therefore, our contribution is an
addition to existing approaches to cyclostationary detection of
OFDM signals that can be achieved at low cost in terms of
FPGA hardware.

The rest of the paper is organised as follows. In Section
2 we derive the proposed cyclostationary detection algorithm
and compare its performance to the existing solutions in [3],
[4] and [5]. In Section 3 we provide details of the FPGA
implementation and compare its cost to the detector in [4].
Finally, in Section 4, we draw conclusions.

II. DERIVATION OF DETECTOR ALGORITHM

OFDM signals exhibit non-conjugate symbol rate cyclosta-
tionarity as discussed in [3]. In order to detect cyclostationar-
ity, we compute the CAF as defined below,

R̂αxx[ν] =
1

N

N−1∑
n=0

x[n]x∗[n− ν]e−j2παn (1)

where x[n] is the discrete input signal, N is the observation
interval, ν is the discrete autocorrelation lag, and α represents
the cyclic frequency of interest normalised to the input sam-
pling frequency, fs. For IEEE 802.11a OFDM operating at
fs = 20MHz, ν = 64 and the fundamental cyclic frequency



is α0 = 0.0125. The FFT of the autocorrelation scaled by a
factor of 1/N is as follows,

X[k] =
1

N

N−1∑
n=0

x[n]x∗[n− ν]e−j2πkn/N (2)

where X[k] is a single FFT bin and k is the bin index.
Inspecting (1) and (2), it can be seen that the CAF corresponds
to a single bin of the FFT where α = k/N . Note that in the
case of IEEE 802.11a the cyclic frequency does not correspond
to an exact FFT bin so some spectral leakage occurs. Since
the peak corresponding to α0 is significant when the signal of
interest is present, we propose to compute the following test
statistic for the detector,

T̂ =

∣∣∣R̂α0
xx[ν]

∣∣∣2
1
N

∑N−1
k=0

∣∣X[k]
∣∣2 (3)

noting that R̂α0
xx[ν] is equal to X[α0N ]. This measures the

strength of
∣∣∣R̂α0

xx[ν]
∣∣∣2 relative to the average squared magnitude

of the FFT bins. The detection problem is formulated as a
binary hypothesis test where the null hypothesis, H0, states
that the received signal is complex white noise. Conversely,
the alternative hypothesis, H1, states that the received signal
consists of the signal of interest plus complex white noise.
By determining the probability distribution of (3) under H0,
we can set a threshold η for the detector based on a desired
Probability of False Alarm (Pfa) as follows [3],

η = P−1(1− Pfa) (4)

where P represents the Cumulative Distribution Function
(CDF). The authors in [4] prove that the following is true
under H0,

2N

σ4

∣∣∣R̂α0
xx[ν]

∣∣∣2 ∼ χ2
2 (5)

where σ is the standard deviation of the white noise signal.
This means that the quantity on the left hand-side of (5) is
χ2
2 distributed under H0. Using this result, we can state the

following,
2N

σ4

N−1∑
k=0

∣∣X[k]
∣∣2 ∼ χ2

2N (6)

since the sum of N χ2
2 random variables is χ2

2N distributed.
We will now denote the left hand-sides of (5) and (6) as A
and B respectively. Now re-writing (3) in terms of A and B,
the test statistic is expressed as,

T̂ =
σ4

2NA
σ4

2NB/N
. (7)

Removing the common factor, this can be simplified to,

T̂ =
A

B/N
. (8)

Therefore, under H0, we compute the ratio of a χ2
2 random

variable to a χ2
2N random variable divided by a factor of

N. It is known that the ratio of two χ2 random variables
each divided by their respective degrees of freedom follows
an F distribution. From (5) and (6), it can be seen that the
degrees of freedom of the numerator and the denominator
are 2 and 2N respectively. It is clear that dividing by 2 on
the numerator and 2N on the denominator is equivalent to
dividing by 1 on the numerator and N on the denominator as
in (8). Therefore, the test statistic in (3) is F (2, 2N) distributed
under H0. For sufficiently large N , the F (2, 2N) distributed
random variable is equivalent to a χ2

2/2 random variable [6].
This is a gamma distributed random variable with a shape
parameter of 1 and a scale parameter of 1. Therefore, (3) is
in fact Γ(1, 1) distributed under H0 for a sufficiently large N.
Note that in cognitive radio applications, the assumption of
a large N is typically valid as sensing needs to be achieved
at very low Signal to Noise Ratios (SNRs). Notice that we
are still computing the test statistic in the frequency domain,
which would require an FFT. This can be resolved by invoking
Parseval’s theorem [7] and realising that the denominator of
(3) can be re-written in the time domain as follows,

1

N

N−1∑
k=0

∣∣X[k]
∣∣2 =

1

N2

N−1∑
n=0

∣∣x[n]x∗[n− ν]
∣∣2 . (9)

The N2 term is present because X[k] is in fact the true
FFT scaled by a factor of 1/N. Therefore, the time domain
equivalent of (3) is,

T̂ =
N
∣∣∣R̂α0

xx[ν]
∣∣∣2

1
N

∑N−1
n=0

∣∣x[n]x∗[n− ν]
∣∣2 . (10)

Notice that we have scaled both numerator and denominator
by N to remove the N2 term. From this point forward, we will
denote the denominator of (10) as C to simplify the analysis
that follows. We also define the following two quantities,

R =
1

N

N−1∑
n=0

<(x[n]x∗[n− ν])
2

I =
1

N

N−1∑
n=0

=(x[n]x∗[n− ν])
2

(11)

where C = R+I. At this stage, we propose a method by which
we compute two modified CAFs in a new test statistic. The first
modified CAF considers the real part of the autocorrelation,

R̂αrr[ν] =
1

N

N−1∑
n=0

<(x[n]x∗[n− ν])e−j2παn (12)

Similarly, the second modified CAF considers the imaginary
part,

R̂αii[ν] =
1

N

N−1∑
n=0

=(x[n]x∗[n− ν])e−j2παn (13)

Using (10) and substituting terms from (11), (12) and (13),
we propose the test statistic,

T̂ =
N
∣∣∣R̂α0

rr [ν]
∣∣∣2

R
+
N
∣∣∣R̂α0

ii [ν]
∣∣∣2

I
. (14)
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Fig. 1. Pd vs. SNR for fixed point proposed and LRT detectors

Each of the terms retains a Γ(1, 1) distribution as in (10),
meaning that (14) is Γ(2, 1) distributed. In order to simplify
the test statistic, we make the assumption that R ≈ I ≈ C/2
which is true under pure noise conditions. After making substi-
tutions based on this assumption and after some mathematical
manipulation, we arrive at a final test statistic,

T̂ =
2N(

∣∣∣R̂α0
rr [ν]

∣∣∣2 +
∣∣∣R̂α0

ii [ν]
∣∣∣2)

C
. (15)

The benefit of using (15) can be quantified by plotting the
Probability of Detection (Pd) vs. SNR for the above detector
and comparing its performance to other solutions in the
literature. Fig. 1 shows Pd vs SNR curves for the proposed
detection scheme and the solutions in [3], [4] and [5]. For the
monte carlo simulations a total of 1000 trials were conducted
at each SNR level and the test signal was IEEE802.11a OFDM
in an Additive White Gaussian Noise (AWGN) channel. The
detector is set up with an observation interval of N = 16384
and Pfa = 0.1 It can be seen that the proposed detector gives
the best detection performance of the considered solutions,
achieving a Pd of almost 100% at an SNR as low as -
9dB. This represents an improvement of approximately 2dB
over the frequency domain LRT detector in [3]. It can also
be seen that the proposed detector significantly out performs
the low complexity solutions in [4] and [5]. Having derived
the detector and established its applicability for the detection
of OFDM signals, we will now go on to discuss its FPGA
implementation.

III. FPGA IMPLEMENTATION AND VERIFICATION

We will now discuss the implementation of the proposed
algorithm in MathWorks HDL Coder [8] using the FPGA-
in-the-loop workflow with an Artix 7 xc7a100t csg324 FPGA.
The first stage involves computing the complex autocorrelation
lag product x[n]x∗[n − ν] which requires four multipliers to
implement the multiplication, a complex conjugate operation
and a delay of 64 (as ν = 64 for IEEE 802.11a signals).
Following this, we split the autocorrelation lag product

|෡𝑹𝒓𝒓
𝜶𝟎 𝝂 |𝟐

|෡𝑹𝒊𝒊
𝜶𝟎 𝝂 |𝟐

𝜂

>

Fig. 2. Block Diagram of Detector Implementation
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Fig. 3. Pd vs. SNR for Proposed Detector using FPGA-in-the-loop

TABLE I
RESOURCE UTILISATION OF PROPOSED DETECTOR ON XILINX ARTIX 7

XC7A100T CSG324 FPGA

FPGA Resource No. Used No. Available % Used

Flip Flops 2,254 126,800 2
LUTs 2,269 63,400 4

BRAMs 0 135 0
DSP48E1s 14 240 6

TABLE II
RESOURCE UTILISATION OF DETECTOR [4] ON XILINX ARTIX 7

XC7A100T CSG324 FPGA

FPGA Resource No. Used No. Available % Used

Flip Flops 1,764 126,800 1
LUTs 4,104 63,400 6

BRAMs 0 135 0
DSP48E1s 14 240 6

into its real and imaginary parts in order to compute the two
modified CAFs in (12) and (13). To compute both of the CAFs,
we require three ingredients; a COordinate Rotational Digital
Computer (CORDIC) unit operating in rotation mode for the
frequency shift by α0, a re-settable integrator to calculate
the summation and a divider to implement the division by
N. In our implementation, we elect to use a power of 2
observation interval of N = 16384 samples such that the



division can be replaced by a simple binary shift operation.
For the test statistic in (15) each of the CAFs then undrgoes
an |.|2 operation which requires two multipliers and an adder.
Since the same functions are computed on both the real and
imaginary parts of the autocorrelation, we propose to share
the hardware required for both of them using multi-channel
techniques. The two channels in this case are the real and
imaginary parts of the autocorrelation. The hardware for the
CORDIC block, re-settable integrator and |.|2 operation are
then shared between the channels, meaning that only one
instance of these components is required rather than two in
parallel. In order to achieve this, these blocks must run at
twice the input sampling frequency and all delays within the
shared hardware must be scaled by a factor of 2. Since the
input sampling frequency rate is 20MHz for IEEE 802.11a,
the required clock frequency is 40MHz which is achieved
by our design. The two channels are multiplexed together at
the input to the shared hardware and de-multiplexed at the
output. The de-multiplexed channels are then added together
as required for the numerator of (15). The result is multiplied
by a factor of 2N which is implemented as a binary shift
since N is a power of 2. The denominator of (15) requires two
multipliers and an adder to implement the |.|2 and a re-settable
integrator to implement the summation. The division in (15)
can be avoided by noting that the test statistic is compared to
a constant,

2N(
∣∣∣R̂α0

rr [ν]
∣∣∣2 +

∣∣∣R̂α0
ii [ν]

∣∣∣2) > ηC. (16)

Therefore, we have replaced the division with a scaling of
the denominator by the threshold η. Fig. 2 illustrates the
processing chain for the proposed detector. The numerator
block encompasses all functionality that is shared i.e. the
calculation of the terms in (12) and (13) and the |.|2 operation.
It has been highlighted in blue to indicate that the hardware
is shared. The denominator block covers all processing re-
quired to calculate C. We use a 12 bit ADC at the input
detector. The wordlength grows to 24 bits after the complex
multiplication for the autocorrelation. On the numerator, the
CORDIC frequency shift is implemented with 10 iterations
and the output wordlength is 24 bits. This is then passed to
the re-settable integrator where the wordlength grows to 38 bits
(since the observation interval is N = 16384) before scaling
by 1/N , after which the wordlength is quantised to 24 bits
again. Finally the wordlength is allowed to grow to 48 bits for
the |.|2 operation to ensure accuracy. On the denominator, the
output of the |.|2 is quantised to 25 bits to limit the bit growth
in the integrator to 39 bits and after the scaling by 1/N the
wordlength is quantised to 25 bits. The result is then multiplied
by the constant η. We chose an η = 3.8897 to guarantee a Pfa
of 0.1 and this was represented with an unsigned wordlength
of 18 bits and 16 fractional bits.

Table 1 shows the cost of this implementation of the pro-
posed detector in terms of Flip Flops, Look Up Tables (LUTs),
Block Random Access Memories (BRAMs) and DSP48E1s
on the FPGA. In terms of the FPGA fabric, the design is

very cost effective consuming only 4% of LUTs. In terms
of BRAMs, which are the scarcest resource on the FPGA,
our design uses 0%. The design consumes 14 DSP48E1s in
its current configuration, which is an acceptable cost. We
also implemented the low complexity detector in [4] using
equivalent word length choices throughout and applying the
same re-arrangement as (16). It can be seen from Table 2 that
the cost of both detectors is broadly similar due to the use
of hardware sharing in our proposed architecture. Finally, Fig.
3 shows Pd vs. SNR curves for both the proposed detector
and [4] generated using the FPGA-in-the-loop feature in HDL
Coder. We can see that our detector achieves a Pd of almost
100 % for an SNR of -9dB, thus verifying that the design
works as expected on the FPGA. The detector in [4] achieved
a Pd of 100 % at -3dB, revealing a 6dB performance gap with
no advantage in terms of hardware cost when compared to the
proposed detector.

IV. CONCLUSIONS

In conclusion, this paper has introduced a low complexity
cyclostationary detector for OFDM signals. The derivation of
this detector relies on splitting the autocorrelation into its real
and imaginary parts and calculating two modified CAFs, be-
fore combining them in a final test statistic. It has been shown
that the proposed detector performs well compared to existing
solutions. An FPGA implementation has also been discussed
and the cost in terms of resources has been shown to compare
favourably with another low complexity detector coupled with
performance advantages. Finally, the implementation has been
successfully verified using FPGA-in-the-loop.
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