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ABSTRACT 

RNA is the most mercurial of all biomacromolecules. In contrast to DNA, where the 
predominant role is the storage of genetic information, the biological role of RNA 
varies; ranging from a template-based intermediary in gene expression to playing a 
direct role in catalysis. Their high turnover and metabolic lability makes the detection 
of specific sequences particularly challenging. This review describes the latest 
synthetic biological developments that enable the direct imaging of RNA both in vitro 
and in their native cellular environment.  
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INTRODUCTION 

RNA is a highly dynamic biomacromolecule that exhibits a diverse range of 

biological functions. In contrast to DNA, where the predominant role is the storage of 

genetic information, the biological function of RNA varies; ranging from a template-

based intermediary in gene expression to playing a direct role in catalysis.[1-4]  As a 

reflection of these diverse roles, RNA is both structurally and spatiotemporally dynamic 

which, when combined with its varied levels of expression, and in many cases, rapid 

rates of turnover, poses significant challenges in reporting the synthesis, processing 

and trafficking of specific RNA molecules in real-time with suitable signal to noise.[5-

7]   

To address this need, a powerful palette of synthetic biology methods has emerged 

over the last 10 years which can interrogate RNA biology with high levels of sensitivity 

and with spatiotemporal control. Strategies such as the development of non-natural 

base-pairs can probe RNA dynamics down to base-pair level resolution.[8-13] In 

parallel, the development of aptamer technology has now reached an exciting stage 

where fluorogenic RNA motifs can detect transcription and even the presence of small 

molecule analytes.[12-13] Finally, RNA-binding proteins and gene-editing tools offer 

an auxiliary means of molecular recognition to detect RNA folds and motifs.[14-16] 

The aim of this review is to critique each of these fast moving areas and suggest 

potential opportunities that could further our understanding of the fundamental biology 

of this fascinating class of nucleic acids. 

 

Expanding Nature’s Genetic Repertoire for Site-Specific RNA Labelling  

 The ability of nucleic acids to act as a template for the storage, replication and 

transfer of genetic information is borne out of the ability of A to pair with T/U and G 

pairing with C.  As a consequence of the prevalence of all four of these nucleotides, 

labelling specific RNA molecules at defined internal positions poses significant 

challenges.[17] A nascent methodology is the development of unnatural nucleotides 

which pair with each other but not with naturally-occurring nucleotides.[18-19] The 

underlying pre-requisite of the success of this approach is the ability of these unnatural 

base-pairs (UBPs) to be replicated and transcribed with similar levels of fidelity to 

naturally-occurring base-pairs. In doing so, further derivatisation of UBPs opens up 
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opportunities to insert modifications into DNA and RNA molecules at defined sites 

using standard biochemical techniques such as PCR, transcription and reverse 

transcription.   

 The unnatural P-Z pair developed by the Benner group is one example of this 

approach. This UBP exhibits a unique hydrogen-bonding arrangement relative to 

naturally-occurring Watson-Crick base-pairs and has been explored in replication, 

transcription and reverse transcription.[20] However, mispairing of Z with G is 

prevalent, which poses difficulties in the wider utility of P-Z as an UBP platform for site-

specific RNA labelling.[21] The Hirao and Romesberg groups have focused on the 

development of synthetic base-pairs which rely on complementarity of shape (Fig. 

1a).[22-24] The hydrophobic Ds-Pa base-pair developed by the Hirao laboratory is 

replicable by PCR with fidelities approaching that of natural Watson-Crick base-pairs. 

Furthermore, this pairing regime can be used to site-specifically incorporate an alkyne 

functional group and fluorescent reporter molecules into RNA.[23] Post-synthetic 

labelling with either a fluorescent azide (e.g., copper-catalyzed alkyne-azide 

cycloaddition, CuAAC) or cyclooctyne (e.g., strain-promoted alkyne-azide 

cycloaddition, SPAAC) is then used to derivatise RNA at defined, internal locations. 

 The d5SICS-dNAM pair developed by the Romesberg group represents a far more 

structurally diverse example of shape complementarity UBP[24-25] where molecular 

recognition occurs via an intercalative mechanism (Fig. 1b).[25] Since the nature of 

shape complementarity is vastly different to the pairing exhibited by natural 

nucleotides, faithful replication of this UBP is observed in vitro and in E. coli.[26]  This 

approach therefore opens up new synthetic biology applications, such as the 

development of semi-synthetic organisms with an expanded genetic alphabet. 

 The Romesberg group has applied these UBPs as a dual RNA-labelling strategy. 

Transcription of DNA incorporating the shape-complementary nucleotides dNAM and 

d5SICS in positons 704 and 750, using ribonucleoside triphosphates 5SICSCOTP and 

MMO2ATP, afforded the 243 nucleotide RNA fragment of the central 16S rRNA domain 

of Thermus thermophiles.[8] Post-synthetic functionalization of the MMO2A position 

with Cy3 NHS-ester and the 5SICSCO position with Cy5 azide (CuAAC) produced an 

RNA fragment doubly-labelled in two defined locations, which was suitable to probe 

the dynamics of ribosome assembly using single molecule studies (Fig. 1c).   
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Fluorogenic Aptamers as Reporters of RNA Synthesis, Dynamics and 

Localization  

For over 23 years, Green Fluorescent Protein (GFP) has been an invaluable tool to 

report on the synthesis and localization of proteins both in vitro and in vivo.[27]  The 

fluorescence characteristics of GFP arise from the formation of the 4-hydroxy-

benzylidene-imidazolinone (HBI) fluorophore during protein synthesis. An equivalent 

GFP-like RNA platform has now been developed using SELEX.[28-30]  Termed 

‘Spinach’, this aptamer binds to the synthetic fluorophore, 3,5-difluoro-4-

hydroxybenzylidene imidazolinone (DFHBI), with a Kd ~ 500 nM and exhibits 

conditional green fluorescence (~ 200-fold increase; max 390 nm; emission ~ 475 nm) 

only when the Spinach-DFHBI complex is formed (Fig. 2a). 

X-ray crystallographic studies have revealed that a structural hallmark of the 

complex is the presence of two G-quartets and a mixed tetrad, which induces the 

DFHBI chromophore to adopt a planar conformation. To accommodate DFHBI, 

Spinach folds into a hybrid structure with two coaxial duplex regions flanking the 

central G-quadruplex (Fig. 2b). When bound, DFHBI is sandwiched between a G-

quartet and a U-A-U Hoogsten triplet, with hydrogen bonding from an unpaired 

guanine preventing lateral movement (Fig. 2c).[31-32] Extensive non-covalent 

interactions and Mg2+ binding also assist in the binding of cis-DFHBI to Spinach.  

This ground-breaking work has spurred the development of next-generation 

variants Spinach2,[33] Broccoli[34] and iSpinach.[35] The 49-nt Broccoli aptamer, for 

example, is significantly smaller than the first generation 98 nt Spinach aptamer and 

exhibits enhanced stability suitable for in cellulo imaging. To address thermal instability 

issues observed in earlier aptamer versions,[36] the Ryckelynck group developed the 

68 nt iSpinach using in vitro compartmentalization to select aptamer populations based 

on fluorescence enhancement. The DFHBI-binding pocket appears to be conserved 

in all Spinach derivatives. 

Spinach aptamers have now found extensive use as reporters in both prokaryotic 

and eukaryotic cells using Spinach fusion variants.[37]  The Jäschke group developed 

a general transcription reporter platform using the first-generation Spinach 

construct.[38]  The group prepared a DNA template bearing a T7 RNA polymerase 
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promoter upstream from an RNA sequence of interest (ROI), a hammerhead ribozyme 

sequence (HHR) and the Spinach reporter.  The authors demonstrated the general 

applicability of the transcriptional reporter system using a range of RNA sequences 

and probed RNAP inhibition by the addition of Heparin, a known RNA polymerase 

inhibitor.  

The Spinach aptamer has been further developed as a reporter platform for analyte 

detection in fusion aptamers where the binding of DFHBI is rendered conditional to 

analyte binding. This elegant sensing method has been used to detect small molecule 

metabolites (e.g., c-di-GMP,[39-40] glycine,[41] ADP & SAM[42]) both in vitro and in 

cellulo.  An exemplar of this approach is the development of conditional SAH sensors 

of methyltransferase activity (Fig. 2d).[42]  The Hammond group developed a Spinach 

fusion where DFHBI fluorescence is conditional on SAH binding. This aptamer sensor 

was used to detect methylthioadenosine nucleosidase (MTAN) activity in E. coli and 

integrated into a high-throughput screening platform to explore inhibitors of this 

enzyme. This technique showed remarkable sensitivity for the target analyte at 10 µM, 

despite the presence of a number of other compounds, including structurally related 

compounds such as SAM and ATP at 100 µM and 3 mM respectively.  

At present, the relatively weak dissociation constants of DFHBI-binding aptamers 

(Kd > 400 nM[43]) are not suitable for single molecule applications where fluorophore 

binding needs to be in the low nanomolar range and exhibit slow off-rates. To address 

this limitation, the Mango thiazole orange (TO)-binding aptamer system was 

developed by SELEX. Mango binds to a biotinylated analogue TO-1 with a KD 3.2 ± 

0.7 nM and induces 1100-fold enhancement in fluorescence emission.[43-44] The 

conditional fluorogenicity of Mango in cellulo was then shown by injecting biotin-TO 

and Mango RNA into the syncytial gonads of C. elegans.  

 

Protein-Derived Recognition of RNA Motifs 

 RNA-binding GFP fusion proteins that have a high affinity for selected RNA 

secondary structures have been highly effective tools for RNA labelling.  The coat 

protein of the MS2 phage (MCP) is the most extensively used to study RNA localization 

and dynamics in cells.[45]  Several limitations of this approach do exist however. 

Firstly, long RNA tags (up to 1200 nt) are typically required in order to effect MCP-
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RNA binding, which could impair RNA biology. Secondly, MCP recognition is not 

sequence specific.  These limitations can partially be addressed by the use of the 

protein Pumilio, which directly recognises RNA sequences 8 nucleotides in length.[46]  

Sequence selectivity of Pumilio is programmable via the use of different amino acid 

substitutions and, when fused with GFP, Pumilio-GFP fusions have shown utility as 

imaging agents to track -actin dynamics in mammalian cells. 

 One of the most biotechnologically important tools that has emerged over the past 

5 years has been the gene-editing CRISPR-associated protein 9 nuclease (Cas9). 

Derived from Streptococcus pyogenes, sequence selectivity of the ribonucleoprotein 

Cas9 system is achieved by base-pairing to a 20 nt target DNA sequence and its 

associated single-guide RNA (sgRNA). The site of double-stranded DNA cleavage is 

directed to a site adjacent to protospacer adjacent motifs (PAMs).[47] Since the 

sequence selectivity is derived from the modularity of the sgRNA, Cas9 has found 

extensive use as a game-changing gene-editing and imaging tool for gene 

expression.[48]  

 The Yeo group has now extended the utility of the gene-editing Cas9 system as an 

imaging tool to detect specific single-stranded RNA sequences 39 nt in length.[15] In 

contrast to RNA targeting using Pumilio proteins, where each protein needs to be 

designed and validated for each RNA sequence, the recognition of arbitrary target 

RNA sequences using the Cas9 system (RCas9) is far simpler, requiring the 

introduction of the complementary sgRNA sequence and a mismatched synthetic 

PAMmer oligonucleotide. Fusing RCas9 with a fluorescent reporter protein (e.g., GFP 

or mCherry) produced a platform to image and track RNA specific RNA molecules, 

such as CCNA2 and TFRC which have low expression levels, into stress granules 

after the induction of cellular stress using sodium arsenite.  Although the need to 

transfect the synthetic PAMmer is one limitation of this approach, the sensitivity of the 

fluorescence emission and the inherent programmability of the platform render the 

RCas9 system one of the most powerful emerging tools to track RNA synthesis and 

cellular distribution.  

 

Summary and Outlook 
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 The multi-disciplinary nature of synthetic biology now offers a powerful palette of 

methods to detect and/or label one of the most challenging biomacromolecules found 

in living cells.  Although each of the major labelling categories covered in this review 

do have their limitations, a blended approach where cross-fertilization of the distinct 

advantages of each of these approaches could offer opportunities to address some of 

the limitations of each method when used in isolation.  For example, blending UBPs 

in the synthesis of PAMmer oligonucleotides for targeting RNA sequences using the 

RCas9 system could offer a new genetically-encoded approach to RNA imaging.[49]  

This and further developments to enhance the sensitivity of fluorescence-based 

approaches will undoubtedly further our understanding of RNA biology.  
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Figure 1. Current developments of unnatural base-pairs (UBPs). A) Structures of UBPs 

developed by Benner (P-Z), Hirao (Ds-Pa), and Romesberg (d5SICS-dNAM). B) Pairing of 

d5SICS (green) with dNAM (violet) within Klen Taq polymerase (PDB: 3SV3).[50] C) Dual 

labelling of 16S ribosomal RNA containing modified dNAM and d5SICS base-pairs. Adapted 

with permission from Lavergne T, Lamichhane R, Malyshey DA, Li ZT, Li LJ, Sperling E, 

Williamson JR, Millar DP, Romesberg FE: ACS Chem Biol 2016, 11:1347-1353. [8] Copyright 

2016 American Chemical Society. 
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D) 

 

Figure 2.  RNA labelling using the Spinach aptamer system. A) Fluorescence activation of 

DFHBI upon complexation with the Spinach aptamer. B) X-ray crystal structure of Spinach. 

Sections P1, P2, and P3 are base-pairing regions, whereas J1-2 and J2-3 represent junctions 

between regions. C) Structure of the DFHBI binding pocket of Spinach. DFHBI is highlighted 

in green, purple spheres are K+ (PDB: 4TS2).[32] D) Schematic of a Spinach-based aptamer 

assay to assess C-methyltransferase activity. SAH riboswitch/cpSpinach2 fusion binds SAH. 

This induces a conformational change allowing for cpSpinach2 to bind DFHBI, which in turn 

switches on fluorescence of DFHBI.  X = C, N, O or S in an appropriate substrate for a SAM 

dependent methyltransferase.  

 

 

 


