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Abstract

In recent years, the need for a more accurate dependability modelling (encompassing reliability,
availability, maintenance, and safety) has favoured the emergence of novel dynamic dependability
techniques able to account for temporal and stochastic dependencies of a system. One of the most
successful and widely used method is Dynamic Fault Tree that, with the introduction of the
dynamic gates, enables the analysis of dynamic failure logic systems such as fault-tolerant or
reconfigurable systems. Among the dynamic gates, Priority-AND (PAND) is one of the most
frequently used gate for the specification and analysis of event sequences. Despite the numerous
modelling contributions addressing the resolution of the PAND gate, its failure logic and the
consequences for the coherence behaviour of the system need to be examined to understand its
effects for engineering decision-making scenarios including design optimization and sensitivity
analysis. Accordingly, the aim of this short communication is to analyse the coherence region of the
PAND gate so as to determine the coherence bounds and improve the efficacy of the dynamic
dependability modelling process.

Keywords: Markov Chains; Monte Carlo Simulation; Repairable Components; Failure Gates;
Dynamic Gates Semantics

1. INTRODUCTION

Fault Tree Analysis is a widely applied technique for the dependability assessment of different
applications. Dependability is a term that encompasses a range of attributes which include safety,
reliability, availability, maintainability, confidentiality, and integrity'. We will not consider
confidentiality and integrity attributes because security aspects are outside of the scope of this
paper.

For complex systems with dynamic failure logic, the use of Fault Trees is limited because they
are unable to accurately capture temporal and stochastic dependencies®. To overcome these
limitations, Fault Trees have been extended with dynamic gates in the Dynamic Fault Tree (DFT)
formalism. Dynamic Fault Trees allow modelling systems with standby logic, sequence of events
and conditional triggering dependencies. Table 1 shows the graphical representation of the dynamic
gates and their failure behaviour specification.

The design of a Dynamic Fault Tree follows a top-down procedure as with classical (Static)
Fault Trees. The top-event represents the system failure condition and this condition is decomposed
into a combination of intermediate events defined by Boolean logic and dynamic gates. Basic
events are the lowest level events, and generally they represent system component faults. However,
the probabilistic analysis of Dynamic Fault Tree models is more intricate than Static Fault Trees. In
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the last few years, different resolution techniques have been proposed to address the quantification
problem. These techniques can be grouped into analytical and simulation approaches. Among the
former, Markov chains’ and state space reduction® are suitable when the time to failure/repair
follows an exponential distribution, whereas analytical solutions based on structure function® or
binary decision diagrams® are normally limited to non-repairable Dynamic Fault Trees. On the other
hand, simulation approaches’ overcome the limitations of the analytical methods, but they can
require long computation times to achieve accurate results.

So as to evaluate the dependability of repairable systems through DFT models, the original
formulation of Dynamic Fault Trees® were extended through a formal semantics that defines the
behaviour of the DFT gates in case of repairable components (see Manno et al.® or Rauzy and
Dutuit’).

Table 1. Dynamic gates of Dynamic Fault Tree

Graphical

Nange Representation

Description (N input)

It triggers only after the primary and all the N-1 spare
occur. Spares can be shared with other spare gate.
It is possible to identify three different types of spare on
’— the basis of the dormancy factor o which is a
multiplicative factor to the active failure rate (when the
SPARE 57 2 {
|

spare is not in use):

Cold: a = 0, spare cannot fail as long is not active.

Hot: o = 1. spare can fail at the same rate as when active.
Warm: 0 < ¢ < 1. spare can always fail. but at a reduced
failure rate when is not in use.

It behaves like an AND gate but it triggers only if the

[ ; E | input events occur in the order from the leftmost to the

£ rightmost.

It forces the input events to occur from the left to the right
order. It can model the gradual degradation of a system.
It behaves as a Cold Spare Gate.

SEQ /
This gate models the failure of the dependent input events
if the trigger occurs. The output is a dummy or an input

FDEP migger |~
for other gates.

N Note that input events can fail by themselves too.

The logic of dynamic gates enables the modelling of temporal dependencies of complex systems
such as fault-tolerant and reconfigurable systems'’. The semantics of some of these dependencies
have been analysed in the literature® including the simultaneity of the events in a PAND gate, the
order of components activation in a SPARE gate, the effects of the restoration of the trigger of a
FDEP gate, or the treatment of constant probabilities.

Surprisingly, the coherence of the PAND gate'' was never discussed in detail. The coherence is
an important property of engineering systems and the most interesting point regarding coherence is
that the increase of the reliability of the input components would imply the increase of the reliability
of the gate. This is what the designers may be interested in, since they could improve the reliability
of the whole system simply by improving the reliability of some basic components. For the PAND
gate a detailed analysis of its coherence behaviour may identify useful patterns from the engineering
usage perspective. In fact, the increase of the failure probability of the input components of the gate
does not always result in an increase of the failure probability of a PAND gate. This is not a
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common pattern for other positive static (e.g., AND, OR, XOR, VOTING) gates, as an increase in a
component failure probability leads directly to an increase in the failure probability of the gate. This
is not typical even for other negative logic gates' " (e.g., NOT, NAND, NOR) whose failure
probability decreases with the increasing failure probabilities of the components. In fact, as it will
be shown, the failure probability of a PAND gate presents a maximum value that depends on the
configuration of its input components.

In many industrial applications the identification and quantification of this property is not trivial.
However, it may have many implications for engineering design applications. For instance, when
engineers need to optimize the system design and this optimization process involves minimising the
system failure probability (e.g., strengthen a system section through improved reliability of specific
components'’ or maintenance plans which minimize cost and failure probability'®), and the failure
model includes time-sequences specified with PAND gates. Therefore, the coherence analysis of the
system may be relevant to identify optimal design decisions.

For a system to be coherent it must meet two requirements'”:

1) Monotonicity: the reliability improvement of any component will improve the system

reliability, and

2) Relevance: every component in the system contributes to the system reliability.

For the PAND gate, it will be shown that the monotonicity of the gate depends on its input
parameters. Accordingly, the aim of this short communication is to discuss the failure behaviour of
the PAND gate and provide a practical way to identify the conditions under which the PAND gate
behaves as a coherent gate, within the so-called coherence region of the PAND gate. The
identification of the coherence region can allow the users to setup a correct intervention for the
improvement of a system (c.g., importance measure'*'® sensitivity analysis'’) and better
understand the results of dynamic dependability analyses, particularly for the class of novel
techniques belonging to the Dynamic Probabilistic Risk Assessment (DPRA). DPRA techniques
make use of non-fixed probability density functions for the failure/repair behaviour of
components'™® ' ?° that, according to the change of operational conditions, need to be interpreted
also on the basis of the knowledge of the coherence region of the PAND gate.

The paper is organized as follows. Section 2 describes the failure logic of the PAND gate and
frames the design-engineering questions related to its use. In Section 3 authors provide an answer to
the questions raised in Section 2 and present a mathematical analysis of a 2-input PAND gate for
both repairable and non-repairable components. Finally, Section 4 presents conclusions and
discussions.

2. PAND GATE BACKGROUND: FAILURE LOGIC AND ENGINEERING CONSEQUENCES
The original PAND gate failure logic was introduced by Fussell ef al.*' and the definition states
that the gate can represent a system that fails if and only if all its inputs fail in left to right order. In
any other case the failure does not occur. The graphical representation of the n-input PAND gate is
shown in Figure 1.
The PAND gate version with repairable inputs was discussed by Manno et al.®
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IN, N, IN,

Figure 1: PAND gate with n inputs. The gate triggers iff inputs fail in the order from left to right.

Equivalently, the generic n-input PAND gate can be modelled with (n-1) interconnected 2-input
PAND gates™. Generally, the left side input of the PAND gate corresponds with the monitoring
system (sensors or alarms) whereas the right side input corresponds with the actuators®*. For
simplicity, the analysis presented in this paper focuses on the PAND gate with two inputs, but
results are directly generalizable to n-input PAND gates.

Figure 2 shows the reachability graphs of a 2-input PAND gate for non-repairable’ and
repairable input events®, where the left and right inputs of the PAND gate are components A and B
respectively. F, and R, denote respectively the failure and the repair transitions of component x
associated to the generic failure and repair probability distributions.
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Figure 2: reachability graph for a 2-input PAND gate with (a) non-repairable and (b) repairable components

In the non-repairable model shown in Figure 2.a, if component B fails before A, it is possible to
identify an absorbing safe state AB in which the system remains permanently. As for the repairable
version shown in Figure 2.b, the state AB is not absorbing because it is assumed that component B
can be repaired and this event brings the system back to the initial state.
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Figure 3 shows the sensitivity analysis of the 2-input PAND gate varying the input failure rates
in the range of values between [0, 107] failures per hour ([h™']) and Figure 4 shows the section of
the 3D plot of Figure 3 by fixing the failure rate of input A, A= 10™ h™'. Observing the two
dimensional plot in Figure 4, it is possible to notice that the probability of failure of the PAND gate
has an absolute maximum value in A’ and starts decreasing for Ag> g
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Figure 3: sensitivity analysis for a 2-input PAND gate Figure 4: section in the plane Az (Ax= 10 h™")

(with t = 8760h)

According to the results of this sensitivity analysis, the reliability of the PAND system can
sometimes be improved by selecting a component B with a lower reliability. This is the typical
characteristic of an incoherent system and, from a design-engineering point of view, raises
questions that require some clarifications:

1) May the engineer design the system by selecting a component B (the actuator) less reliable

than the component A (the monitoring component)?

2) How should the engineer select the system components if he/she is allowed to substitute

them with other components having different reliability characteristics?

Due to the incoherent behaviour of the PAND gate, the answer to these questions is not
straightforward. But, a qualitative analysis of the PAND gate with non-repairable components
(Figure 2.a) can reveal some interesting properties that help to answer the first question. Namely, at
steady-state the reliability of the system does not tend to zero, as expected in a system with non-
repairable components, because it is distributed between the failure state AB and the safe state AB.
This observation allows us to answer to the first question and agree with the fact that engineers
should design a system in which the actuator component (i.e., input component B) is less reliable
than the monitoring component (i.e., input component A). In fact, when the system transits towards
the safe state AB (i.e., the actuator component fails), the failure of the system is avoided. This
applies for both non-repairable (i.e., the system remains in the state AB) and repairable components.

In the repairable case, we can assume a hypothetical engineering scenario in which component B
fails and gets repaired repeatedly such that the system transits from the initial state AB to the safe
state AB and back continuously. Clearly, from a practical point of view, this scenario is not
desirable as it carries the major inconvenience linked with the service unavailability of the system
and the economic loss of its maintenance and restoration. In order to be effective, it must remain as
much as possible in the initial state AB.

An answer to the second question can offer the opportunity to tackle the paradox of the previous
observation. In this case, the problem to solve is how to select the system components so as to
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increase the system dependability, but avoiding the issue of the service unavailability. In the next
section we will address this issue analysing in deep the incoherent nature of the PAND gate. We
will provide some useful information about the PAND gate behaviour and a practical way to
recognize the coherence region of the gate.

3. COHERENCE ANALYSIS OF THE PAND GATE

Let us define Y = {vj, va,..., vy} as the vector of variables that characterize the probability
density function (PDF) of the time to failure (or time to occur) of a component (or an event). For
instance, the well-known Poisson PDF (modelling random failures) is characterized by a single
parameter, called failure rate (v, =), or the Weibull PDF (used to model the bathtub behaviour) has
two variables, called shape (v; = ) and scale (v, =y) parameters. Under this setting, it is possible to
define the coherence region, CR, as:

aF(y)

CR:{v; € R: >0,i=1,..,n} (Eq. 1)

Vi

Eq. 1 defines a n-dimensional space in which the probability of failure of a PAND gate F(Y) is
monotonically increasing in all its argument v; belonging to the set of real number R.

In order to simplify the problem, the behaviour of the gate can be studied using the
corresponding Continuous Time Markov Chain model, assuming constant random failures/repairs
rate (Fao = Aa, Fg = A, Ro = R = p). Equations in (Eq. 2) show the Kolmogorov differential
equations related to the transient analysis of the PAND gate with repairable components (Figure
2.b):

X1 = (xz + X3)u — X1 (A4 +2p)

Xz = X1Ap — Xz (Eq. 2)
X3 = X1Aa — X3(L + Ag) + x4

X4 = X3Ap — X4k

To obtain the system of equations that defines the scenarios of Figure 2.a, it is possible to simply
set i = 0. The system of differential equations in (Eq. 2) can be written in the matrix form, using the
infinitesimal generator matrix (or Generator Matrix) Q:

X =QX
(Eq. 3)
. 5(2 }\B —u O X0
X = . =
| ¢ A 0 - s AB) . [x3
Xy 0 0 Xy

The probability P(X;) = x;(t) of the system to sojourn at time t in the i state can be found by
integrating the system of differential equations (Eq. 3). According to the reachability graph in
Figure 2, for the PAND gate, the failure of the system occurs in the state Xa.

The simplest case to solve analytically is the PAND gate with non-repairable input components
(Figure 2.a). This scenario represents the most common example in literature of Dynamic Fault
Trees. In the next sections we will examine the steady state and coherence region analysis by
starting from the non-repairable case and we will gradually increase the complexity by including
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repair rates (Section 3.2) and the restoration of component B in the failure gate® configuration
(Section 3.3). The mission time and the failure rate of the components A and B are taken from a
previous work® and represent the typical scenario of an industrial case of study. The failure and
repair rates used in the numerical examples showed in the rest of the paper are measured
respectively in number of failures and number of repairs per hours ([h]).

3.1 Non-repairable components

According to the reachability graph of Figure 2.a it is possible to identify two absorbing states
(X, and X4) that are, by definition of PAND gate?, respectively a safe and a failure state. Equations
(Eq. 4.2) to (Eq. 4.d) show the solution for the system (Eq. 2) with p=0:

X1 (t) = e~(Ra+ip)t (Eq. 4.2)
A —
%0 =5 (1-e (Aatdp)ty (Eq. 4.b)
X3(t) = e7ABt — e=(Aa*2p)t (Eq. 4.c)
_ Mgt Age~Gatipt
x, () = s € Bt 4 BT (Eq. 4.d)

Since the analytical determination of the coherence region is complex, it is possible to evaluate
numerically the positivity of the partial derivatives of x4(t) = P(X4) by fixing the mission time and
the failure rates of one of the two components alternatively. That is, so as to evaluate the partial
derivative of the PAND gate with respect to the failure rate of component A, we fix the mission
time and the failure rate of component B and vice-versa.

Figure 5 shows the partial derivative of x4(t) with respect to the failure rate of component A,

%, in the range of values A 5 € [0, 10] h™! with mission time T, = 8760h, and Ag = 7.5x10™ h™".
A
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Figure 5: derivative of P(X,) with respect to the variable A5, with t = 8760 and Az=0.00075

1 2 3 4

According to results shown in Figure 5, when we compute the partial derivative of the PAND
gate with respect to the failure rate of component A, the PAND gate will always behave as a
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coherent system (% > 0,V A4 € [0,107%] h™1) and an increase of the failure rate of component
A

A turns in the increase of the PAND gate unreliability.
Assuming the same parameters as in Figure 5, the partial derivative of x4(t) with respect to the
failure rate of component B is shown in Figure 6 (mission time Ty, = 8760h and Ax =1.7x10™ h'l).

200
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aP(X,) 50 b
g |t=8760 " | Ag ~ 2.2x107*
i L i e
A5 1.7x10 i
-50 |
|
-100
150 |
-200 |
-250 | |
0 1 2 3 4 5 6 7 8 9 10
Ag [b1] <103

Figure 6: derivative of P(X,) with respect to the variable Ag, with t = 8760 and 2,=0.00017

We can see in Figure 6 that for failure rates higher than 2.2x10™* h™' the system behaves
incoherently (% < 0) because the monotonicity condition is not satisfied. Notice also that when
B

the failure rate of component B is much higher than the failure rate of component A (Ag>>\4), in
the long term P(X;) = 1. That is, if t —oo, P(X;) = P(X3) = 0, P(X2) = Ap/(AatAp) and P(X4) =
Aa/(Aat Ag). Setting Ag>>Aa, P(X2) = Ap/(AatAs) = 1, while P(X4) = Aa/(Aat+ Ag) = 0. This is an
inherent property of the PAND gate which is in contrast with the definition of the reliability of a
system™. In fact, reliability is a monotonic decreasing probability function that tends to zero for t
approaching infinity. In other words, all the absorbing states of the corresponding system
reachability graph must be of failure for the system. This shortage has been tackled in Manno® with
the introduction of the failure gate and, according to this design, authors suggest to include at least a
repair rate from X, to X;, when interested in the evaluation of the system reliability (see Section
3.3).

3.2 Repairable components
In case of repairable components, it is more appropriate to grasp to the concept of system
availability” and skip the transient analysis in favour of the steady-state regime. To do that, it is
possible to solve the balance equations:
X=QX=0 (Eq. 5)
subject to the condition
i Xi=1 (Eq. 6)

The solution of the algebraic system (Eq. 5-6) is:
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P(X,) = m (Eq. 7.2)
P(Xz) = m (Eq. 7.b)
P(X5) = % (Eq. 7.c)
P(X,) = W (Eq. 7.d)

To determine the coherence region, it is sufficient to evaluate the positivity of the partial derivatives

of P(X4). It can be shown that:

P(Xs) _ A

= Eq.
M Gatm2Opt (Eq. 8)
and
OP(X4) Aap
- Eq. 9
As | OetZ0atw) (Eq. 9)

are always positive for each positive value of failure and repair rate. Since we are not interested in
negative failure rates, we can conclude that the repairable PAND gate does not behave incoherently
in R*.

3.3 Failure PAND Gate with repairable inputs

The adoption of the failure PAND gate8 allows to solve the limit discussed in Section 3.1
concerning the absorbing nature of the safe state X,. With this configuration we assume that
component B can be repaired only when the component B fails before A. Figure 7 shows the
reachability graph of this configuration and it is easy to observe that, at steady state, P(X,) = 1 fort

—00,

— —

( \:} Initial State r\'_ } Failure State
X1
o~
- AB | s
A\ / F.‘\
Fe ~ /
A \\
L B
X ( AB }-Re (A )X
e ' -._II'__
B
o —_—-._‘ //FB

Figure 7: reachability graph for a 2-input failure PAND gate with repairable components
As in Section 3.1, the determination of the coherence region can be performed numerically. In

this case, the model presents one more variable, namely the distribution function Ry linked to the
repair transition. For the sake of simplicity, in the numerical example used we assume that this
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transition is exponentially distributed with rate p = 1 h™. This setting expresses the practical
circumstance of a system in which repair transitions are much faster than faults (u >>A, g >>Ag).
Again, setting the mission time to Ty, = 8760h, Figure 8 and Figure 9 show the positivity of the

partial derivative of x4(t), in the range of values A € [0, 10™'] h™", respectively for a;;;)q)
A
with Aa= 1.7x10* h ™ and Ag = 7.5x107*h™.
1t -
2l |
10f .'I ]
a:;gxg t=8760 I". ]
A IAF7.5x1 0¥ \
B=1 6p |
it 3
2k
oF e ——
1 2 3 4 5 6 9 10
Ap 7] x 1072

Figure 8: derivative of P(X,) for the failure gate model, with respect to the variable A5 (t = 8760 h and A5=0.00075 h")
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Figure 9: derivative of P(Xy) for the failure gate model, with respect to the variable Ag (t = 8760 h and A,=0.00017 h'l)

Figure 8 demonstrates that, with reference to the failure rate A5, the PAND gate keeps behaving
> 0,VA, € 0,107 h™!) and an increase of the failure rate of

OP(Xy)

as a coherent system ( o
A
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1
2

3 component A turns in the increase of the PAND gate unreliability. Conversely, Figure 9 shows that
g values of failure rate higher than 1.09x10 h™ make the system behaving incoherently (%)f:) < 0).
6

; 4. CONCLUSIONS

?0 This short communication discusses the incoherence nature of the PAND gate, one of the most
11 important and utilised gates of Dynamic Fault Tree analysis. The incoherence of the PAND gate
12 emerges due to the existence of the safe state in which the system sojourns in case the events do not
13 trigger in the order specified by the failure logic (from left to right).

1‘51 In this paper, a 2-input PAND gate for non-repairable and repairable components has been
16 analysed. To simplify the experimental scenario, failure and repair times of occurrence have been
17 set so as to follow the exponential distribution of probability. Results have shown that the failure
18 probability of a PAND gate can present a maximum value; therefore the increase of the reliability of
19 the input components does not always result in an increase of the gate reliability. This behaviour
g? has been revealed for the PAND gate with non-repairable components and for a PAND gate in
29 which the second input component can be repaired only if it fails before the first one. Conversely,
23 the PAND gate with repairable components behaves always as a coherent system.

24 The coherence analysis may identify a useful region for optimization and sensitivity analysis
25 purposes, and in order to better interpret the results of dynamic dependability models. To be aware
23 of this behaviour, in particular when it is required to perform an improvement of the system
o8 reliability, it is suggested to identify the coherence region of operation, studying the positivity of the
29 partial derivative of the failure probability function with respect to the input parameters. This
30 method is not always feasible because the quantification of the closed analytical solution of the
31 PAND gate can be tedious, in particular when systems present non-exponential distributions of
gg probability and repairable components. In this latter case, a well-tuned simulation campaign can
34 help into the identification of approximate boundaries.
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