
This version is available at https://strathprints.strath.ac.uk/61944/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
ABSTRACT

- Hyperelastic characterisation requires multiaxial test data – uniaxial tension, pure shear and equibiaxial tension
- To increase the efficiency of material characterisation, a novel, inhomogeneous experiment is introduced utilising finite element optimisation
- No-slip compression test data is compared to an equivalent finite element model to optimise the coefficients of several material models
- Autonomous investigation of method through Finite Element Analysis (FEA)
- To increase the efficiency of material characterisation, a novel, autonomous investigation of method through Finite Element Analysis (FEA)

SIMULATED EXPERIMENT

- No-slip uniaxial compression (NsC) test
 - Standard ASTM D575 specimen: 28.6mm diameter, 12mm thickness
 - Compressed with full friction – sticking once in contact
 - Strain field is inhomogeneous – simultaneous tensile, compression and shear modes
- Finite Element (FE) modelling in Abaqus
 - Investigate test & optimisation parameters using axisymmetric FE model
 - Ogden N=3 constants fitted to Treloar’s data [1] (uniaxial, planar and equibiaxial tension)
 - Generate pseudo-test data for use in Isight optimisation
 - Requires accurate and converged solution before simplification
- FE optimised model requirements:
 - Minimise solution time while maintaining accuracy
 - Symmetry applied and mesh partitioned – significant element reduction
 - “Rough” friction formulation further reduces solution time to 26 seconds
 - Free from volumetric locking and hourglassing

RESULTS

- Observations
 - Higher compression reveals more accurate multiaxial constants but results in more convergence failures
 - Ogden-3 model is by far the least efficient method and fails most often
- Assessment criteria
 - Homogeneous test data plotted using fitted constants
 - Relative error calculated for each and compared to optimal fit from Abaqus
- Optimisation with NsC test only
 - All models fit the NsC test accurately
 - 8-chain and Ogden models do not reveal multiaxial parameters
- Optimisation with NsC and Uniaxial Tension tests
 - 8-chain and Ogden are significantly improved
 - Yeoh model gives a better average fit

CONCLUSIONS & FUTURE WORK

- Novel characterisation method can reduce required testing
 - Yeoh and 8-chain may use one and two tests, respectively
 - The Ogden model is too inefficient to be considered as viable
- Further investigation: parametric study of specimen geometry
- Improvements to method
 - Previous study by Le Saux [2] revealed that indentation may be used to reveal the constants of the Edwards-Vilgis model – requires UMAT implementation
 - The extended-tube model [3] is similar to the Edwards-Vilgis and will also be implemented for comparison
- Experimental validation: assess method for unfilled and filled rubbers

REFERENCES

ACKNOWLEDGEMENTS

This project was supported in full by an EPSRC Studentship grant, project reference (1811648), related to (EP/N059760/1). Acknowledgement also goes to Mr T. Dalrymple of Dassault Systèmes Simulia Corp, who originally conceived the inhomogeneous test method within “Isight Calibration of a Bonded Rubber Puck".