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Abstract

The match of an injector with the combustion chamber was studied under four different
engine loads. Four design parameters including the start of injection, the spray angle, the
injector protrusion length and the swirl ratio were examined. The Latin hypercube together
with a NLPQL algorithm were used in the optimisation. Comparisons were made in the
engine loads in terms of the optimisation history, objectives, sub-objectives and design
parameters. The commonalities of the design parameters of the optimums were summarised.
Additionally, a detailed combustion process comparison was conducted on the same engine
loads (100% and 25% engine loads) between the optimum and the baseline design,
respectively. Finally, the effects of the design parameters on the objective were investigated
by the RSM. The results indicate that the NLPQL method is an effective algorithm to spot the
optimums with the best trade-off between the NOx and soot emissions. The optimisation
process presents better qualities at the 100% and 75% engine loads than at the case of the
50% and 25% engine loads. The design parameters of the optimum under each engine load
have something in common, namely that they all prefer the late injection, low swirl, large
injection angle and slightly smaller nozzle protrusion length. Besides, the start of injection
and the swirl ratio have larger influences on the objective as opposed to the nozzle protrusion
length and spray angle. The large start of injection together with the small swirl ratio can
reduce the objective significantly and vice versa. A large nozzle protrusion length with a
small spray angle contributes to the reduction of the objective; and so does the combination
of a small nozzle protrusion length with a large spray angle.
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1 Introduction

Marine diesel engines are extensively used for ship propulsion due to their high
reliability and fuel economy. However, the intolerable pollution caused by them is gaining
increased attentions worldwide. Compared to automotive diesel engines, its CO, CO2 and HC
emissions are much lower, whereas the NOx emissions are severely deteriorated. Although
after-treatment devices are frequently applied in order to reduce the NOx emissions, the
optimisation of the in-cylinder combustion process is still of great significance. However,
combustion is very susceptible to the match status of the fuel injector and combustion
chamber. Prominent works have already been carried out in this domain. Taghavifar et al. [1]
studied the effects of the bowl movements and radius on the mixture formation in terms of
the homogeneity factor, combustion initiation and emissions for a 1.8 L Ford diesel engine.
Four different combustion chamber shapes were designed in each bowl movement direction,
where the bowl radius and outer bowl diameter were increased. They pointed out that the
mixture uniformity increased in line with the bowl displacement toward the cylinder wall, but
conversely experienced an increase in the combustion delay, which substantially reduced the
effective in-cylinder pressure. Mobasheri et al. [2] investigated the influence of a re-entrant
combustion chamber geometry on mixture formation, combustion and performance for a
high-speed direct injection diesel engine. Thirteen combustion chambers with different
shapes were designed by adjusting the piston parameters, i.e. bowl depth, bowl width, piston
bottom surface and the lip area. References [3-7] developed a KIVA code with pGA, MOGA
or NSGA-II in order to study the matching of a variety of injection-related parameters and
combustion chamber geometries. A significant amount of optimisation work was completed
from small bore high-speed direct injection engines to heavy-duty large bore slow-speed
diesel engines [3, 4, 5, 6, 7].

In practical applications, however, it is much easier to adjust the injection-related
parameters, such as the injection timing, injection angle, injector protrusion length and swirl
ratio, than modify the combustion chamber geometries in order to improve the engine
performance and achieve a lower emission level. This makes the importance of the fuel
injection-related parameters more prominent. Beatrice et al. [8] studied the effects of the most
important injection settings on the engine performance and emissions of a 2.0 L Euro 5 diesel
engine when using the two fuel blends. A DoE method was applied. The results indicated that
the pilot injection quantity and rail pressure value are the most influential factors in the
gaseous unburned reduction. Combustion phasing and the dwell time are positive to the
unburned gaseous reduction but negative to the combustion noise. Pandian et al. [9]
investigated the effects of the injection-related parameters, such as the injection pressure,
injection timing and the nozzle protrusion length on the performance and emission
characteristics of a twin cylinder water cooled naturally aspirated CIDI engine. The RSM was
built by DoE in order to predict the brake specific energy consumption (BSEC), brake
thermal efficiency (BTE), carbon monoxide (CO), hydrocarbon (HC), smoke opacity and
NOx. The results showed that the BSEC, CO, HC and smoke opacity were lower, and that the
BTE and NOx were higher with the combination of 2.5 mm nozzle tip protrusion, 225 bar
injection pressure and 30 degree BTDC of injection timing.



Emissions and fuel economy are always a pair of irreconcilable contradictions.
Therefore, the GA is frequently used for finding an optimum with the best trade-off between
them, as already stated previously. Nevertheless, even a single run of a combustion CFD case
is time consuming, for example, a period of four and a half hours is needed when a case is
calculated by a single core Intel 17-4790 CPU@ 3.6 GHz, needless to say how much time it
will take when there are hundreds of cases in a GA optimisation process. Recently, the
NLPQL algorithm was introduced for the engine combustion optimisation in only a few
studies. The performance thereof is more attracitve due to a reduced time consumption with
optimal designs found not bad than the GA. Chen et al. [10] optimised four injection-related
parameters and three combustion chamber geometry parameters of an 8.9 L Cummins diesel
engine. The NLPQL algorithm was applied to optimise the three re-entrant combustion
chamber geometries in detail, while the injection-related parameters were not included.
Navid et al. [11] compared the GA and the NLPQL algorithms when they were used for
optimising a Ford 1.8L DI engine. A re-entrant combustion chamber was involved. The
results indicated that the NLPQL algorithm was effective in optimising four factors including
the injection angle, half spray cone angle, the inner distance of the bowl wall and the bowl
radius by approaching an optimal design faster than the GA. Both references [10-11] deal
with the optimisation of the re-entrant combustion chambers. Interestingly, Hu et al. [12]
compared the performance of an NLQPL algorithm and a GA and later combined them
together. Both algorithms were checked with the purpose of optimising seven engine design
parameters (the injection timing, the spray angle, the nozzle protrusion length, the swirl ratio,
the bowl diameter, the centre crown height and the toroidal radius). They implied that the
performance of the NLPQL algorithm may be satisfactory with significantly fewer runs by
properly choosing the start point. Yet these studies deal with the optimisation with
combustion chambers under a specific engine load, the performance of NLPQL algorithm,
the differences and commonalities in the optimums of different engine loads were not
revealed.

The RSM is frequently used as the tool to analyse the sensitivity of the design
parameters on the objectives (NOx, soot and SFOC) [5, 6, 9]. It uses an approximation model
in order to analyse the data generated by the DoE method. Several functions can be used for
building approximation models, such as polynomials, SS-ANOVA, NN [13, 14], etc. The SS-
ANOVA [6, 9, 15, 16] was frequently adopted in many engine optimisation tasks.

In this study, the NLPQL algorithm was adopted in order to optimise the four
injection-related parameters matching with a shallow basin shape combustion chamber under
four different engine operating loads. Firstly, the optimisation process was compared under
four different engine loads in terms of optimisation history, objectives, sub-objectives and
design parameters. Secondly, the detailed combustion process was disclosed by comparing
the baseline design with the optimal designs of the L100 and L25 engine loads, since they
have the largest and smallest NOx emissions reductions respectively. Then, the effects and
interactions of the design parameters on the objective were investigated through RSM.

2 Optimisation algorithms


http://www.sciencedirect.com/science/article/pii/S0196890416310755

It is commonly known that the NLPQL algorithm is a local optimisation method,
associated with a local optimum. In order to overcome this disadvantage, the Latin hypercube
design is adopted before the NLPQL design.

2.1 Latin hypercube design

In Latin hypercube design, the design space of each factor or design parameter was
divided into » levels uniformly. On each level of every factor, only one design point is
placed. For each factor, »!permutations of the n levels are possible. The design matrix of the
Latin hypercube consists of one column for each factor and the column is determined by a
randomly chosen permutation of the n levels. For a row in the design matrix, n* combinations
are possible and have an equal chance of occurring. As the matrix is generated randomly, the
correlation between the columns may exist [17].

2.2 NLPQL algorithm

NLPQL was developed by Klaus Schittkowski [ 18] for solving the nonlinear
programming problem.

min f(X)
g; =0,j=1..,m,

xeR":gj(x)zO,j:me+l,...,m (1)
Xp SXSX,

Where, x is the n-dimensional parameter vector. x,and x, are the lower bound and upper

bound of x. f(x) is the problem function. g, (x) are the constraints of the problem.

The optimisation method generates a sequence of quadratic programming
subproblems which are to be solved successively. The method is therefore known as the SQP
method. It assumes that objective functions and constraints are continuously differentiable on

the set E ={x e R" :x, <x<x,}. Note that the functions f and gj,j =1,...,m need to be

defined only in the set E, since the iterations computed by the algorithm will never violate the
lower and upper bounds.

If NLPQL algorithm is used to solve a multi-objective problem, a merit function with
a weighted sum method must be adopted to transfer it to a single objective optimisation
problem. The formula of weight sum method is

k
Objective = Z 1,0.(x) ()

i=l1
In (2), u;1s the weight of each objective, which is decided by researchers according to their

experiences, O, are the sub-objectives.



In this paper, the merit function is built in (3) to reduce the NOx and Soot emissions,
and minimise the fuel consumption rate as well. The weights are given according to
experience [10].

Objectivez[N—OXj*S+( Soot ]*1{ SFOC J*3 3)

NOx_b Soot_b SFOC_b

Where, NOx_b, Soot b, SFOC b are the NOx emissions, soot emissions and SFOC of the
baseline design. The NOx emissions, soot emissions and SFOC to the value of baseline
design are regards as the three sub-objectives here.

3 Preparation

3.1 Engine specifications

The main specifications of the marine medium-speed diesel engine and fuel injectors
are presented in Table 1. It is an in-line type, four-stroke diesel engine with six cylinders. Its
rated speed and rated powers are 1000 rpm and 540 kW, respectively. The spray orifice
distribution of the original injector of the mechanical fuel injection system is 9*0.28 mm,
which is replaced by an electronic fuel injector of 9*0.23 mm for the performance and
emission prediction study.

Table 1 Specifications of the engine and fuel injectors

Specifications Value
Engine name MAN
6L16/24
Cylinder arrangement In-line
Number of stroke 4
Bore(mm) 160
Stroke(mm) 240
Number of cylinders 6
Rated speed (r/min) 1000
Rated power (kW) 540
SFOC (g/kWh) 189

Compression ratio 15.2



Original injector 9*0.28 mm

Electronic fuel injector 9*0.23 mm

3.2 Simulation models

Simulations were conducted by using a series of the AVL FIRE software. Firstly, a
combustion chamber at the TDC moment was drawn in the FIRE 2D Sketcher software
according to the shape of the upper surface of the piston and the clearance distance between
the piston surface and the cylinder head. Secondly, the design combustion chamber
geometries were loaded in the FIRE ESE Diesel software in order to build a CFD model. In
this instance, the k-zeta-f [19, 20] turbulent model for high Reynolds numbers is adopted to
describe the flow field inside a combustion chamber. Stand wall function was used to
describe heat transfer of wall. Piso algorithm [21, 22] is adopted here to solve the highly
unsteady-state flow of the combustion problem. In terms of the fuel spray model, the
Dukowicz [23] model was applied for handling the heat-up and evaporation of the fuel oil
droplets. Moreover, Wave [24, 25] break-up model and Walljet1[26, 27] wall interaction
model are used respectively. The Eddy break-up model [28, 29] is introduced in the
calculation of combustion. With regard to emission models, an extended Zeldovich [30]
mechanism was adopted for the NOx emission model while a Kinetic mechanism for the soot
emission model [31, 32, 33]. Once the CFD model is validated, it can be used for a multi-
objective study. Thus, the CFD model was loaded in the FIRE DVI software, where the
calculation settings were specified. Then, the FIRE Design Explorer software was invoked,
where the design variables and their variation ranges, objectives, constraints and algorithms
were defined or selected. Finally, the combustion images were processed in the FIRE
Workflow Manager software. The complete scheme of the software used in the study is
shown in Fig. 1.
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Fig. 1 The scheme of a series of the FIRE software used in the study

3.3 Model verification

A FIRE simulation model of the original diesel engine was executed on the condition
of rated engine speed and four engine loads. Light diesel oil (represented by DIESEL-D1 in
AVL Fire software) is used in the calculation. In order to improve the convergence at the
beginning of the calculation, the initial calculation step is set to 0.2 CAD. Then, 1 CAD is
adopted at the compression stroke in order to accelerate calculation and save time as well.
However, at the injection stage, the precision is emphasised by reducing the calculation step
to 0.2 CAD again. In the expansion combustion stage, the 0.5 CAD calculation step is
adopted. With regard to average mesh size, Abraham [34] recommended the mesh size to be
on the same length scale with nozzle diameter. Thus, the average mesh size is set to 1mm,
totally 125k cells were calculated. Fig. 2 shows the mesh of original combustion at 0 CAD
(TDC), 64.5 CAD and 180 CAD (LDC), which are described by (a), (b) and (¢) in Fig. 2
respectively. The mesh at TDC has minimum cell numbers of 4063 while the mesh at LDC
has maximum cell numbers of 15833.
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The comparisons of the cylinder pressures between the simulation data and the test
data of each engine load are shown in Fig. 3. It can be seen that a good agreement of
simulation data and experimental data under each load is achieved, especially at the
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combustion stage. At the compression and expansion stages, the simulation data was a little
bit larger than the test data, that’s because the pressure losses induced by leakage were not
considered in the simulation model, while these losses do exist in the authentic diesel

engines.
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Fig. 3 Pressure comparisons of the experimental data and the simulation data of each engine

load

NOx emissions are also examined and compared at each engine load. As shown in

Fig. 4, the main trend of simulation results corresponds to the experimental data. The
maximum error occurred at full load which is less than 6.5%.
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Fig. 4 NOx emission comparison of test data and simulation data of four engine loads

Verification indicates that the model can be used to simulate and predict the engine
performance when replacing the original mechanical fuel injection by a high-pressure
common rail injection system. The engine body with the high-pressure common rail fuel
injection system is considered as the baseline design, which kept the match parameters the
same as the original one.

3.4 Design parameters and their constrains
The design parameters and their constraints are shown in Table 2.

Table 2 Design parameters and constraints

Parameters Baseline Lower bound Upper bound

SOL CA 710 700 720
SR, - 1.0 0.5 2.5

SA, deg 143 131 155



NPL, mm 2.5 1.0 4.0

3.5 Optimisation settings
The optimisation settings of the NLPQL algorithm are listed in Table 3.

Table 3 Optimisation setting of the NLQPL algorithm

Property Value
Maximum number of function evaluations 5
Maximum number of iterations 20
Step size for finite difference step 0.001
Accuracy le-05

4 Results and discussion

4.1 Comparisons of the objectives

Fig. 5 to Fig. 8 report the optimisation history with NLPQL algorithm of each engine
load. The red vertical dashed lines indicate the position where the minimum objective of each
engine load locates. The red circle points identify the history of the objectives. The ratios of
the NOx, soot and SFOC to the baseline design are represented by black diamond points, blue
triangle points and reversed yellow triangle points respectively. Each Run ID represents a
design case.

In all of the history charts, the first 30 results of each load were searched by the Latin
hypercube algorithm. This algorithm was used prior to NLPQL algorithm in order to avoid
the NLPQL algorithm being trapped by a local optimum.

From Fig. 5 to Fig. 8, a maximum of 64 runs were presented in the L75 engine load,
and a minimum of 52 runs occurred in the L25 engine load. Compared to the reference [11],
the totals runs of the NLPQL algorithm are significantly fewer than the evolution method
GA. The minimum objectives locate at the Run ID 37, Run ID 32, Run ID 32 and Run ID 6
of the L100, L75, L50 and L25 engine loads respectively.
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Fig. 8 Optimisation history of the L25 engine load

4.2 Comparisons of the sub-objectives

The scattering charts of NOx vs. soot and NOx vs. SFOC under all four engine loads
are shown in Fig. 9 and Fig. 10, respectively. In the figures, the black rectangular points
represent the baseline design, while the blue triangle points represent the best designs of each
load.

Fig. 9 clearly shows that the NOx emissions achieved a significant reduction in all
four engine loads, namely up to 43.8%, 35.7%, 32.0% and 25.0% of the L100, L75, L50 and
L25 loads, respectively. The specifications were reported in Table 4 and the visualised
comparisons were made in Fig. 11. However, the reduction rate decreases with the decrease
in the engine loads. Soot emissions achieved an even larger reduction rate, of up to 50% in
the L100 engine load and of approximately 80% in the other three engine loads. In general,
the optimum of each load achieved the best trade-off between NOx and soot emissions. From
this point, it can be inferred that the NLPQL algorithm is effective for the optimisation of
each engine load. Yet slight differences in terms of the distribution of the solutions disclosed
the optimisation quality level under different loads. In other words, most of the solutions
located at the bottom left corner in Fig. 9 (a) and (b) indicate that the optimisation process



searched around an area where an optimum with the best trade-off may locates with a larger
possibility. However, Fig. 9 (c¢) and (d) reported that the top left corner has a larger density of
the distribution of solutions, thus, the optimisation process is tilted toward the reduction of
the NOx emissions. So it can be assumed that the optimisation qualities of the L50 and L.25
engine loads (low engine loads) are not as good as those of the L100 and L75 engine loads
(high engine loads). Evidence can also be found by the objective history of each engine load
from Fig. 5 to Fig. 8.
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Fig. 10 indicates that the optimum of each engine load gets the penalties of a higher
fuel consumption rate, i.e., 17.0%, 9.2%, 4.9% and 2.2% of the L100, L75, L50 and L25
engine loads, respectively. Obviously, the fuel economy penalty increases with the increase
in the engine load. Combining Fig. 9 and Fig. 10, an interesting phenomenon may be
observed, namely that although smaller reductions of NOx and soot emissions were achieved
at low engine loads, they got lighter penalties on the fuel economy.
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Fig. 11 Comparisons of the sub-objectives of the baseline design and the optimal design of
each engine load

Table 4 Sub-objectives comparisons of the baseline design and the optimum design under
each engine load

Load NOx (gkWh) Soot (g/kWh) SFOC (g/kWh)
Base- Opti-  Status Base- Opti- Status Base-  Opti- Status
line mum line mum line mum

L100 9.09 5.11 143.8% 0.10  0.05 150.0% 230 269 117.0%

L75 10.00 6.43 135.7% 021  0.04 181.0% 229 250 19.2%
L50 11.04 7.51 132.0% 029  0.06 179.3% 223 234 14.9%

L25 10.97  8.22 125.0% 0.73  0.13 182.2% 224 229 12.2%

4.3 Comparisons of the design parameters

Table 5 represents the design values of the baseline design and the optimum design of
each engine load. The optimal designs of each engine load were represented by the Optimum-
L100, the Optimum-L75, the Optimum-L50 and the Optimum-L25, respectively. From the
table, some commonalities from these designs can be drawn below.

(1) Late injection, fuel oil injection happened near the TDC, especially under the full
load, the injection happened exactly at the TDC.

(2) Low-swirl, the swirl to be favoured in the optimal design of each load is nearly
half of the baseline design.
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(3) Large injection angle, the injection angle of 147 degree is the most popular one
among optimal designs.

(4) Slightly smaller nozzle protrusion length, the preferred NPL of each load is
slightly smaller than the baseline design.

Table 5 Parameter comparisons of the baseline design and the optimum design of each load

Design SOI (CAD) SR (-) SA (deg) NPL (mm)
Baseline 710 1 143 2.5
Optimum-L100 720 0.5 147.6 2.2
Optimum-L75  716.6 0.7 154.2 1.6
Optimum-L50  714.5 0.5 147.6 2.2
Optimum-L25  714.5 0.5 147.6 2.2

4.4 Comparisons of the detailed combustion process

The detailed combustion progress comparisons of the loads L100 and L25 were
shown in Fig. 12 and Fig. 13 respectively, since the optimal design of the L100 load achieved
the largest reduction of NOx emissions and SFOC penalty, whereas the optimum design of
the L25 load attained the smallest NOx emissions reduction and SFOC increase. The baseline
design (Baseline-L100) and the optimum design (Optimum-L100) under the L100 load are
presented by the back and red lines; the baseline design (Baseline-L25) and the optimum
design (Optimum-L25) under the L25 engine load are shown by the grey and blue lines. They
were compared at both the L100 and L25 roads respectively. In the previous section 4.3,
commonalities were found with the late injection, low swirl, large injection angle and slightly
smaller nozzle protrusion length. These features affect the combustion process profoundly.

The late injection leaves less time for the fuel-air mixing, and thus the ignition delay
period was shortened. A large spray angle results in some fuel aiming at and adhering to the
bottom of the piston head and on the surface of the bowl area, since a low swirl is applied.
All of these lead to the inadequate fuel-air mixing, as presented by the results of Optimum-
L100 in Fig. 13. Although approximately the same conditions were happened on the
Optimum-L25, the results in Fig. 13 show some differences to those of Optimum-L100.
Under low engine loads, the injection duration is much shorter than under high engine loads,
thus, the injection kinetic energy and penetration ability are weaker. Therefore, the fuel
adheres to the surface of the cylinder head and gathers around the centre crown area, as
shown in the bottom right part of Fig. 13. However, under full load, a longer injection
duration offers the fuel a larger injection kinetic energy, which results in fuel adhering to the
bowl surface.
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The inadequate fuel-air mixing of both the optimum designs of L100 and L25 loads
lead to a pent-up rate of heat release, as well as an insufficient combustion, by comparing to
the baseline on the same loads, respectively. Therefore, the maximum temperature in the
combustion chamber achieved in these cases are lower than the baseline conditions. The
lower maximum temperatures discourage the NOx formation. That are the main reasons for
the low NOx emissions achieved in the optimal designs, evidence can be found in Fig. 12 (¢),
(d) and (a). Interestingly, higher soot formation rates are seen in the baseline designs of both
the L100 and L25 engine loads, as opposed to the baseline designs because of inadequate
mixing, as shown in Fig. 12 (b). However, high soot formation rates do not necessarily mean
high soot emissions in the end thanks to the high rate of soot oxidation offered by the high
temperature in the afterburning process. The high temperature in the afterburning process is
the side benefit of the late injection because more fuel was burned following the combustion
stage. In addition, an increased fuel consumption was seen in the optimal designs as
punishment negative results of insufficient combustion.

22



340 360 380 400 420 440

Crank angle (deg)

(c)

120
S 100
[}
2
=2 —
2 80 3
© g
9 2
o 60 @
g g
£ 40 5
k) (=
Q
ez 20

340 360 380 400 420 440

Crank angle (deg)

Fig. 12 Detailed combustion process comparisons

Soot (g/kWh)

340

Crank angle (deg)
(d)

1800

1600

1400

1200

1000

800

H Baseline-L100
[/ ——— Optimum-L100
—— — Baseline-L25
—--— Optimum-L25

340

360 380 400 420 440

Crank angle (deg)

23



Equival- 10 CAATDC 20 CAATDC 80 CAATDC

ence
ratic 000 200 400 600 800 1000 000 080 180 270 360 450 000 029 058 087 1.16 145

Baseline- Optimum-
L25 L25

- -
= al

NP

Fig. 13 Fuel-air equivalence ratio comparisons

Baseline- Optimum-
L100 L100

4.5 Effects of the design parameters on the objective

The optimisation data from the L100 engine load was used to study the effects of the
design parameters on the objective, which are shown by the RSM functions in Fig. 14. In the
figure, only the examined parameter varies, while the other parameters remain the same as
the baseline value. From the figure, the objective obviously decreases with the increase in the
SOI and NPL, and increases along with the SR. The objective reaches a bottom value when
the SA is 139 deg and increases slightly when it decreases or increases. Another fact
indicating that the SOI and the SR have more significant impacts on the objective than the
NPL and SA due to larger scopes of the objective variation were seen in Fig. 14 (a) and (b).

Fig. 15 and Fig. 16 are the RSM charts of the SOI and SR, NPL and SA, respectively.
The bright diamond points in the figures represent the Baseline-L100. Fig. 15 disclosed that a
large SOI together with a small SR can reduce the objective significantly and vice versa. Fig.
16 indicates that a large NPL with a small SA or a small NPL with a large SA contribute to
the reduction of the objective. Conversely, a small NPL together with a small SA or a large
NPL combined with a large SA worsen the objective.
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5 Conclusions

This paper adopted and evaluated the Latin hypercube design along with the NLPQL

algorithm in order to optimise the four injection-related design parameters match with a
combustion chamber of a marine medium-speed diesel engine under four different engine
loads. Comparisons of the objectives, sub-objectives, design parameters and detailed
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combustion process were carried out. The differences and commonalities of the optimums in
four engine loads were also inspected and a detailed combustion process comparison of the
optimum and the baseline was conducted under L100 and L.25 engine loads respectively.
Finally, the effects of the design parameters on the objective were studied by RSM. The main
conclusions were drawn below.

(1) The maximum optimisation process was ended with less than 64 runs and the
optimum under each load were found with the best trade-off between the NOx emissions and
the soot emissions, although a high SFOC was always identified along with these optimums.
The efficiency of the NLPQL algorithm is proven.

(2) Better optimisation qualities were found in high engine loads than in low engine
loads. In other words, the optimisation process of the L100 and L50 engine loads searched
around an area where an optimum with the best trade-off may locates with a larger
possibility. However, under low engine loads, the optimisation history and distribution shows
that the optimisation process is tilted toward the reduction of the NOx emissions, whereas the
soot emissions were neglected in some extent.

(3) The largest NOx emissions reduction and the heaviest fuel economy penalty were
seen with the optimum of the L100 engine load. However, the lowest NOx emission
reduction along with a slight increase of the SFOC were spotted with the optimum of the L25
engine load.

(4) Commonalities of the optimal designs of the four engine loads were found with
the late injection, low swirl, large injection angle and slightly smaller nozzle protrusion
length.

(5) The SOI and SR have larger influences on the objective than the NPL and SA. A
large SOI together with a small SR can reduce the objective significantly and vice versa. A
large NPL with a small SA or a small NPL with a large SA contribute to the reduction of the
objective. However, a small NPL together with a small SA or a large NPL combined with a
large SA worsen the objective.
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