CAMELOT-Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox

Di Carlo, Marilena and Romero Martin, Juan Manuel and Vasile, Massimiliano (2017) CAMELOT-Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox. CEAS Space Journal. ISSN 1868-2510 (https://doi.org/10.1007/s12567-017-0172-6)

[thumbnail of Di-Carlo-CEASSJ2017-CAMELOT-Computational-Analytical-Multi-fidElity-Low-thrust-Optimisation-Toolbox]
Preview
Text. Filename: Di_Carlo_CEASSJ2017_CAMELOT_Computational_Analytical_Multi_fidElity_Low_thrust_Optimisation_Toolbox.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

CAMELOT (Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. In order to do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made by using two optimisation engines included in the toolbox, a single objective global optimiser and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal deorbiting of space debris, from the deployment of constellations to on-orbit servicing. In this paper the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.