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Abstract—This paper addresses the identification of source-
sensor impulse responses from the measured space-time covari-
ance matrix in the absence of any further side information about
the source or the propagation environment. Using polynomial
matrix decomposition techniques, the responses can be narrowed
down to an indeterminacy of a common polynomial factor. If
at least two different measurements for a source with constant
power spectral density are available, this indeterminacy can be
reduced to an ambiguity in the phase response of the source-

sensor paths.

I. INTRODUCTION

Second order statistics of sensor array data have been

used in numerous ways to characterise signal processing

parameters. In the case of sources in the array’s far-field,

and in the absence of multipath propagation, for example the

angles of arrival can be estimated for both narrowband [1],

[2] and broadband signals [3]–[5]. For near-field or multipath

propagation, signal parameters have been extracted for the

narrowband case, see e.g. [6], but the broadband approach is

more difficult and often can only be made sufficiently robust

to multipath effects without directly exploiting or extracting

these [7].

However, the extraction of parameters such as a source’s

power spectral density (PSD), as well as multipath charac-

teristics of the transfer paths can be usefully exploited to

obtain clues about the propagation environment, which in turn

can assist in locating a source. For example, in [8] a model

of the propagation environment has been extracted from a

single impulse response. Similarly, impulse responses of a

single input multiple output sysyte can be utilised to infer the

geometry of an acoustic room [9] or attempt to acoustically

image the propagation environment and locate the source [10].

Therefore, this paper investigates to which extend poly-

nomial matrix decomposition techniques [11] can assist in

resolving the desired impulse responses. To do this, Sec. II

describes the model for the scenario, and the data that is

acquired. Sec. III reviews the polynomial eigenvalue decompo-

sition (PEVD) and ambiguities associated with its polynomial

matrix factors. Sec. IV outlines that with the source in a

single position, not much can be determined. If measurements

include a relocation of the source (by either movement of the

source or the sensor array), then the source power spectral

density and the magnitude responses of the transfer paths

can be extracted, as demonstrated in Sec. V. While this

leaves us with a phase ambiguity, the polynomial approach

is still capable to retrieve significantly more information than

a frequency-bin approach would be capable of achieving,

as shown in Sec. VI. A numerical example is provided in

Sec. VII.

II. SOURCE MODEL

We assume a single source that illuminates an M -element

sensor array as shown in Fig. 1. The transfer functions between

the source and the sensor elements are contained in a vector

ai(z) ∈ CM ,

ai(z) =







Ai,1(z)
...

Ai,M (z)






, (1)

where i is a measurement campaign index. A measurement

campaign is here defined as a data acquisition over a brief

period of time over which the propagation paths between

source and array are stationary, such that transfer functions as

shown in (1) can be defined. The source is assumed to be wide

sense stationary with a PSD S(z). From one measurement

campaign to the next, a variation of the transfer functions

in ai(z) is expected to occur and may arise from a relative

change between the source and the sensor array, i.e. either

through a movement of the source, a change in the array’s

position, orientation, or configuration, or through a change in

the propagation environment.

If the sensor signals are collected in a vector xi[n] ∈
CM , then the sensor covariance matrix is Ri[τ ] =
E
{

xi[n]x
H
i [n− τ ]

}

. The cross-spectral density (CSD) during

this ith campaign is

Ri(z) =

∞
∑

τ=−∞

Ri[τ ]z
−τ (2)

= ai(z)S(z)a
P
i (z) + σ2

nIM (3)

where σ2
n is the power of spatially and temporally uncorrelated

measurement noise, and {·}P is the so-called parahermitian
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Fig. 1. Model with source power spectral density S(z) and two measurements
campaigns along the source’s trajectory relative to the sensor array with
transfer functions Ai,m(z), m = 1 . . .M , between the source and the M
sensors.

operator, such that aP
i (z) = aH(1/z∗) is the Hermitian

transposed time-reversed version of a(z). Because of its

dependence on z, the CSD matrix R(z) is referred to as a

polynomial matrix. With R[τ ] in (3) being composed of auto-

and cross-correlation terms, due to its inherent symmetry R(z)
represents a parahermitian matrix, such that R(z) = RP(z).
This property is an extension of the symmetric or Hermitian

property of real and complex-valued matrices, respectively, to

the ring of polynomial matrices.

We assume that the source maintains the same power

spectral density, but that due to non-stationarity or movement

of the source, the vector of transfer functions changes between

measurement campaigns.

III. POLYNOMIAL EIGENVALUE DECOMPOSITION

The eigenvalue decomposition (EVD) of Hermitian matrices

is a central operation in signal processing, and below we will

discuss some aspects of defining an extension of the EVD to

parahermitian polynomial matrices, called a polynomial EVD

(PEVD) [11].

A. Existence

For a parahermitian matrix R(z), the PEVD currently

has not yet been proven to exist, but it is claimed that

a good approximation by means of FIR paraunitary matrix

factor Q(z) and a diagonal and spectrally majorised Λ(z) of

sufficient order can be found [12], such that the PEVD [11]

or McWhirter decomposition

R(z) ≈ Q(z)Λ(z)QP(z) (4)

holds. Spectral majorisation implies that when evaluat-

ing the polynomial eigenvectors contained in Λ(z) =
diag{λ0(z) . . . λM−1(z)} on the unit circle, the power spec-

tral densities fulfil

λm(ejΩ) ≥ λm+1(e
jΩ) , ∀Ω m = 0 . . . (M − 2) . (5)

This restricts an ambiguity of the decomposition w.r.t. a

potential frequency-dependent permutation of eigenvalues and

-vectors.

Instead of spectral majorisation, if an analytic R(z) is

evaluated on the unit circle, R(ejΩ) = R(z)|z=ejΩ , Fourier

domain factors for eigenvalues and -vectors can be selected

analytic in Ω [13]. These can be extended to eigenvalues and

-vectors that are analytic, i.e. maximally smooth, functions in

z. This now enables an exact decomposition with equality (4),

but must be based on Laurent series, since the factors Λ(z) and

Q(z) may be of infinite length i.e. potentially transcendental

functions in z. Below, we assume that such an analytic rather

than a spectrally majorised PEVD is selected, and exists with

equality in (4).

The columns of Q(z) are the polynomial eigenvectors

um(z),

Q(z) =
[

q0(z) . . . qM−1(z)
]

. (6)

Based on the polynomial eigenvalues and -vectors, the PEVD

can also be written as

R(z) ≈

M−1
∑

m=0

λm(z)qm(z)qP
m(z). (7)

B. Ambiguity

To explore ambiguity, we assume that the PEVD in (7)

exists with equality. For the eigenvectors,

qm(z)qP
n(z) = δ(n−m) , (8)

holds with m,n = 1 . . .M . They can be modified as

q′

m(z) = Um(z)qm(z) , (9)

by an arbitrary allpass filter U(z), such that the q′
m(z), m =

0 . . . (M − 1) will still form valid eigenvectors satisfying (8).

This allpass filter must be common to all elements of qm(z),
and can in the simplest case form a delay [14]. Note that

therefore qm(z) and q′
m(z) will have an identical magnitude

but different phase responses.

This ambiguity is a generalisation of the ambiguity of

eigenvectors of a non-polynomial eigenvalue problem, where

both sides of Av = λv can be multiplied by an arbitrary

phase shift ejϕ, such that v′ = vejϕ akin to (9).

C. Iterative PEVD Algorithms

Iterative PEVD algorithms currently belong to the families

of sequential best rotation (SBR2) [11] and sequential ma-

trix diagonalisation (SMD) [15] algorithms. These perform

an approximate iterative diagonalisation by FIR paraunitary

factors. The type of rational function represented by an allpass

filter implementing an arbitrary phase response is likely to be

approximated by a large number of zeros. This ambiguity in

(8) may be hidden, but motivates the comparison of transfer

functions across every eigenvector qm(z), m = 1 . . .M of

Q(z) for common zeros, and particular delays [14].

The above PEVD algorithms of the SBR2 and SMD families

tend to extract spectrally majorised diagonal matrices, which in



case of SBR2 can even be proven [16]. In case that eigenvalues

intersect on the unit circle, spectral majorisation will enforce

the approximation of non-analytic eigenvalues and -vectors.

To guarantee analytic eigenvalues even in case of eigenvalues

intersecting on the unit circle, algorithms different from SBR2

or SMD are required, with a DFT-base approach in [17] a first

step.

IV. EXTRACTION BASED ON A SINGLE CAMPAIGN

We assume that for a single measurement campaign i, the

CSD matrix Ri(z) according to (2) has been estimated, and

its PEVD exists and is known, such that

Ri(z) =
[

qi(z)q
⊥

i (z)
]

[

γi(z) + σ2
n

σ2
nIM−1

] [

qP
i (z)

q
⊥,P
i (z)

]

(10)

= qi(z)γi(z)q
P
i (z) + σ2

nIM . (11)

The difference between the source model in (3) and the PEVD

in (11) is that qi(z) is by definition normalised while ai(z)
is unnormalised,

qP
i (z)qi(z) = 1 (12)

aP
i (z)ai(z) = Ai(z) = A

(+)
i (z)A

(−)
i (z) (13)

= A
(+)
i (z)A

(+),P
i (z) , (14)

where Ai(z) is a PSD and Ai[τ ] ◦—• Ai(z) has the symmetry

properties of an auto-correlation function, i.e. Ai(z) = AP
i (z),

and A
(+)
i (z) is the minimum-phase part of Ai(z). It is assumed

that Ai(z) has no spectral zeros. Normalisation of ai(z) can

therefore be accomplished by setting

ai,norm(z) =
ai(z)

A
(+)
i (z)

. (15)

With this normalisation, (3) can be rewritten as

Ri(z) = ai,norm(z)A
(+)
i (z)S(z)A

(+),P
i (z)aP

i,norm(z)+σ2
nIM .
(16)

Comparing (16) to (11), with γi(z) the dominant eigenvector

minus the noise floor in the PEVD in (11), we can extract

qi(z) =
ai(z)

A
(+)
i (z)

(17)

γi(z) = A
(+)
i (z)S(z)A

(+),P
i (z) , (18)

such that the vector of transfer functions and the source power

spectral density can be determined except for unknown scaling

factors 1/A
(+)
i (z) and A

(+)
i (z)A

(+),P
i (z), respectively, and the

phase-indeterminacy inherent in the eigenvectors of the PEVD.

V. EXTRACTION BASED ON MULTIPLE CAMPAIGNS

Instead of a single campaign, now multiple measurement

campaigns have been performed and the decompositions (17)

and (18) are available for i = 1 . . . I . If there are no roots that

are common to all A
(+)
i (z), then the source PSD represents the

greatest common divisor (GCD) across all instances of (18),

Ŝ(z) = GCD{γ1(z) . . . γI(z)} . (19)

From this, estimates of the scaling terms Â
(+)
i (z) remaining

in (17) and (18) can be extracted for every measurement

campaign.

The estimation of the scaling term Â
(+)
i (z) now leads to a

more precise estimate of the source-array transfer functions

from (17), whereby only an indeterminacy remains in the

phase response for every â(z) due to the ambiguity charac-

terised in Sec. III-B, leading to

âi(z) = Â
(+)
i (z)Ui(z)qi(z) (20)

with Ui(z) an arbitrary allpass filter according to (9). With

the ambiguity restricted to the phase responses, however the

magnitude responses of the source-array transfer paths are now

fully determined.

The viability of this approach depends on an accurate

determination of a GCD, i.e. of finding common zeros across

multiple polynomials. This problem has been addressed by

Euclid in his 7th book of Elements around 300BC [18], by a

method referred to as Euclid’s algorithm. Because its robust-

ness deteriorates quickly with the order of the polynomials,

refinements are still being made to date, see e.g. [19]–[25].

As we will explore through an example in Sec. VII, extract-

ing a GCD even for a controlled scenario is difficult based on

recent algorithms such a [25]. However, the aim here is to

highlight the general approach independent of the problem of

root finding, where perhaps robust approaches such as Gröbner

bases may provide viable future alternatives.

VI. SOLUTION IN INDEPENDENT FREQUENCY BINS

Classically, broadband problems are often addressed by

solving a number of narrowband or discrete Fourier transform

(DFT)-domain problems independently in adjacent frequency

bins. In this section, we consider an approach where the input

signal is split into K such frequency bins, and compare this

as a benchmark to the findings of Secs.IV and V.

Applying K-point discrete Fourier transforms to the mea-

sured signals, then with sufficient averaging K narrowband

covariance matrices Ri,k arise at the normalised angular

frequencies Ωk = 2πk
K

, k = 0 . . . (K − 1) during the ith
measurement campaign,

Ri,k = Ri(e
jΩk ) = ai(e

jΩk)S(ejΩk )aH
i (e

jΩk ) + σ2
nI (21)

= qi,kλi,kq
H
i,k , (22)

where Ri(e
jΩk ) = R(z)|z=ejΩk is the evaluation of (2) on

the unit circle for frequency Ωk.

The principal eigenvectors and eigenvalues for the measure-

ment campaigns are

qi,k =
ai(e

jΩk )

|ai(ejΩk )|
, (23)

λi,k = S(ejΩk)|ai(e
jΩk)|2 , (24)

which again are discrete evaluations of (17) and (18) on the

unit circle.

Even for multiple measurement campaigns, the scaling now

cannot be resolved, since the coherence between frequency
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Fig. 2. Source PSD S(z) compared to eigenvalues λi(z) calculated from
Ri(z) of both measurement campaigns, with the scaled versions to correct
for (18). All PSDs are normalised to a maximum value of unity.

bins in the independent frequency bin representation has been

lost compared to (17) and (18). Also, (23) has an indetermi-

nacy w.r.t. angle since adding multiples of 2π to the phase and

therefore imposing a delay will not change the vector. Part of

this indeterminacy could be removed by considering coherence

across frequency bins and thus unwrapping the phase; this

process is however not directly obvious from (23) and (24),

and requires additional processing.

Therefore, without additional processing to account for co-

herence between bins, the independent frequency bin method

exhibits an indeterminacy in terms of both amplitude and

delay, and can retrieve neither the transfer functions Ai,m(z)
nor the source power spectral density S(z).

VII. NUMERICAL EXAMPLE

As an example, a source with power spectral density

S(z) =
1

2
z +

5

4
+

1

2
z−1 (25)

illuminates an M = 2 element array during measurement

campaign i = 1 via the transfer function vector

a1(z) =

[

1 + 1
2z

−1

3
4 − 1

2z
−1

]

, (26)

and during measurement campaign i = 2 via

a2(z) =

[

4
5 − 1

2z
−1

− 1
2 + z−1

]

. (27)

The PSD and various magnitude responses are shown in

Figs. 2–4; for easier comparison with some of the calcula-

tions further below, the curves are normalised such that their

maximum value is unity.

Using the SMD algorithm [15] to estimate the PEVD,

the eigenvalues λi(z), i = 1, 2 are determined; their PSDs

are displayed in Fig. 2. These bear no resemblance with

the source PSD; neither can the principal eigenvectors qi(z)
reveal anything about the source-array transfer functions when

considered in isolation. Evaluated on the unit circle, the

TABLE I
ROOTS OF POLYNOMIAL EIGENVALUES λi(z), i = 1, 2.

index λ1(z) λ2(z)

1 -16.4293 -1.9998
2 -2.0001 1.8314
3 -0.5000 0.5460
4 -0.0609 -0.5001

magnitudes responses of the given source-array paths and the

determined principal eigenvectors in Figs. 3 and 4 do not

match, as expected from Sec. IV.

To identify the common scaling factors across both cam-

paigns, we closer inspect the eigenvalues λi(z), i = 1, 2.

Since the toy problem is noise-free, we have γi(z) = λi(z)
w.r.t. (11). After trimming the order of the polynomial matrix

factors in the PEVD, the principal eigenvalues campaigns both

have four roots each as listed in Tab. I. Two roots at z = −2
and z = − 1

2 match closely, but do not entirely coincide

due to estimation errors by the SMD algorithm as well as

due to trimming of the polynomial matrix factors [14]. As

a results, root finding algorithms such the one in [25] cannot

determine the GCD exactly, and roots here have been matched

by inspection.

The matching zeros of Tab. I form the GCD, which now

represents the estimate for the source PSD according to (19).

This is demonstrated by the close agreement between the

orginal and the estimated source PSDs in Fig. 2. From the

remaining zeros in Tab. I with |z| < 1, the minimum phase

correction factors

A
(+)
1 (z) = 1 + 0.0609z−1 (28)

A
(+)
2 (z) = 1− 0.5460z−1 (29)

are extracted. These enable the estimation of the transfer

function vectors via (20), with ambiguity of the phase response

but matching magnitude responses as seen for the paths of

campaign i = 1 in Fig. 3 and for campaign i = 2 in Fig. 4.

VIII. CONCLUSIONS

This paper has explored the possibility of extracting source-

sensor paths and source power spectral densities based on the

second order statistics of data collected by the sensors only.

If only a single measurement is available, the transfer paths

have an ambiguity with respect to an unknown common poly-

nomial factor, i.e. neither amplitude nor phase response can be

determined precisely. By having at least a second measurement

campaign — defined as a separate measurement of the same

source but with different transfer functions — this ambiguity

can in principle be narrowed down to the phase response. We

have assumed that multiple measurement campaigns are taken

over time, but this can be equally performed spatially, e.g. by

partitioning the array.

The approach has exploited polynomial matrix EVD tech-

niques, which are well-suited for addressing broadband prob-

lems, as they address coherence. This has been demonstrated

to differ significantly from an independent frequency bin
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Fig. 4. Transfer functions and principal eigenvector components for measure-
ment campaign i = 2, with corrected eigenvectors based on both campaigns.

approach, which retains an ambiguity with respect to phase

and magnitude even for multiple measurement campaigns due

to the negligence of coherence across frequency bins.

Extraction of accurate magnitude responses of the source-

sensor paths depends on robustly determining the greatest

common divisor across several polynomials. Estimation errors

in the covariance matrices and approximations inherent in

iterative PEVD algorithms make this difficult, and robust root

finding methods will be crucial for developing this approach

further. This may well pose practical limitations for the

proposed approach, but does not limit the theoretical findings

of this paper.
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