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Abstract—In this paper, we present a new multichannel
spectral factorization algorithm which can be utilized to cal-
culate the approximate spectral factor of any para-Hermitian
polynomial matrix. The proposed algorithm is based on an
iterative method for polynomial matrix eigenvalue decomposition
(PEVD). By using the PEVD algorithm, the multichannel spectral
factorization problem is simply broken down to a set of single
channel problems which can be solved by means of existing
one-dimensional spectral factorization algorithms. In effect, it
transforms the multichannel spectral factorization problem into
one which is much easier to solve.

I. INTRODUCTION

Spectral factorization arises in the analysis and design of

linear systems, such as constructing a causal system which

corresponds to a given spectral density function. The concept

was initially introduced by Wiener to factorize the spectrum

of a random sequence [1], and has been further extended

to multivariate sequence scenarios [2]. Since then, Youla [3]

established the fundamental results on rational spectral matrix

factorization problems.

There exist numerous algorithms for calculating spectral

factorization, such as a Newton-Raphson based method pro-

posed by Wilson for the scalar case [4] and the polynomial

matrix case [5], and the spectral factorization algorithm de-

veloped by Janashia et al. [6]. A paper written by Kučera [7]

illustrated some major parametric methods for calculating the

spectral factorization, including Toeplitz matrix decomposition

and Newton-Raphson iterations. Each method has its own

advantages to cope with spectral factorization, but none of

them is perfect. They are only suitable under certain circum-

stances. Newton-Raphson’s method converges fast at the cost

of high computational complexity, while the Toeplitz matrix

decomposition converges more slowly with less computational

cost. In addition, a paper written by Sayed [8] presented a

survey of spectral factorization methods including the Bauer

method, the Schur algorithm, the Levinson-Durbin algorithm,

and techniques based on the Riccati equation, the Kalman filter

and so on.

Most of these spectral factorization algorithms, with the

exception of those due to Wilson and Janashia, do not extend

to the multichannel situation. Wilson’s algorithm seems to

provide a viable approach to the multichannel spectral fac-

torization problem in terms of stability and reliability but is

reputed to run into problems when the number of channels

grows too big.

Spectral factorization has attracted lots of interest in dig-

ital signal processing and communications in recent years.

Applications have been found in areas, such as designing

minimum phase FIR filters, quadrature-mirror filter banks

[9], the optimum transmit and receive filter matrices for

precoding and equalization of multiple-input multiple-output

(MIMO) systems [10], and minimum phase FIR precoders for

multicasting MIMO frequency selective channels [11].

The contribution of this paper is to study a novel method

in computing the multichannel spectral factorization, and this

method utilizes an iterative PEVD algorithm, known as the

second order sequential best rotation (SBR2) algorithm [12],

to break down the multichannel spectral factorization problem

into independent single channel spectral factorization problems

for which suitable algorithms already exist. In addition, the

fundamental indeterminacy property of spectral factorization

has been exploited in order to keep the resulting spectral factor

order as low as possible.

For the rest of the paper, we start by formulating the

multichannel spectral factorization problem in Sec. II. In

Sec. III, an iterative PEVD algorithm, i.e. the SBR2 algo-

rithm, is briefly introduced. Sec. IV describes the proposed

multichannel spectral factorization method. Simulation results

and conclusions are shown in Sec. V and Sec. VI respectively.

II. PROBLEM FORMULATION

In many signal processing applications involving multiple

sensors, given a data vector x[n] ∈ CM , the space-time co-

variance matrix is represented by R[τ ] = E
{
x[n]xH[n− τ ]

}
,

in which E {·} denotes the expectation, and the superscript H

stands for Hermitian transpose. Thus the cross-spectral density

(CSD) matrix R(z) is computed by applying z-transform
to R[τ ], s.t. R(z) =

∑
τ R[τ ]z−τ . Note that the CSD

matrix is a para-Hermitian polynomial matrix, which satisfies

R̃(z) = R(z). Here R̃(z) is the paraconjugate of R(z), and
it is defined as R̃(z) = R

H(1/z), i.e. applying Hermitian

transpose to the polynomial coefficient matrices R[τ ] and

time-reversing all the elements in it.

According to Wiener’s spectral factorization theorem [2],

[6], [13], if a para-Hermitian polynomial matrix R(z) is

positive definite on the unit circle |z| = 1, and if det{R(ejθ)}
satisfies the Paley-Wiener condition

∫ π

−π

ln det{R(ejθ)}dθ < ∞ , (1)



then R(z) has a spectral factorization

R(z) = R+(z)R−(z) = R+(z)R̃
+
(z) , (2)

where R+(z) and R−(z) are respectively defined as an outer

and inner spectral factor [6], and R
−(z) is paraconjugate of

R+(z), i.e. R−(z) = R̃
+
(z).

Note that an outer spectral factor R
+(z) is not unique

due to the fundamental indeterminacy in spectral factorization

whereby if R+(z) is a valid outer spectral factor of R(z) so
also is R+(z)U(z) where U(z) represents any paraunitary

polynomial matrix which preserves the essential properties

associated with an outer spectral factor. This includes simple

examples such as U(z) = zT I, U(z) = S where S is a simple

unitary matrix, or the case in which U(z) takes the form of a

diagonal matrix with each entry given by a power of z which

need not be the same for all entries.

According to [6], [10], [14], the outer spectral factor

R+(z) =
∑

τ≥0R
+[τ ]zτ in (2) is unique up to a constant

unitary factor C, s.t.

R
+
c (z) = R

+(z)C , (3)

and the unique spectral factor R+
c (z) is positive definite at the

origin, i.e. R+
c (0) > 0. Furthermore, it admits the following

conditions

1) det{R+
c (z)} 6= 0, ∀|z| < 1;

2) the coefficient matrix R+
c (0) is lower triangular with

unit diagonal entries.

III. ITERATIVE PEVD ALGORITHMS

The PEVD of a para-Hermitian matrix R(z) ∈ CM×M

can be seen as an extension of the conventional eigenvalue

decomposition (EVD) to broadband signal processing, which

has been generalized as [12]

H(z)R(z)H̃(z) ≈ D(z) , (4)

where D(z) is a diagonal para-Hermitian matrix. The

polynomial matrix H(z) is paraunitary, s.t. H(z)H̃(z) =
H̃(z)H(z) = I. It can be seen as a multichannel all-pass

filter which aims to diagonalize R(z) by means of paraunitary

similarity transformation while still preserving the total signal

energy [15].

The PEVD can be approximated by an iterative process

which transforms off-diagonal elements in R(z) onto the diag-
onal. To date, a number of iterative algorithms have been de-

veloped to compute the PEVD, including the SBR2 algorithm

[12], the sequential matrix diagonalization (SMD) algorithm

[16], multiple shift maximum element SMD (MSME-SMD)

algorithm [17], and multiple shift SBR2 (MS-SBR2) algorithm

[18] etc.

In this paper, the SBR2 algorithm [12] is chosen for the

purpose of testing the validity of the PEVD-based spectral

factorization method, simply because it is the most established

among all the PEVD algorithms mentioned before. However,

other PEVD algorithms might be better choices in terms of

convergence speed. A brief introduction of SBR2 is given in

the following part of this section.

At the i-th iteration, the SBR2 algorithm [12] starts by

locating the maximum off-diagonal element r
(i)
jk [τ ]. To find

the maximum off-diagonal element, we define a matrix S(i)[τ ],
which contains only the upper triangular elements inR(i−1)[τ ]
with the remaining elements set to zero. Thus the location of

r
(i)
jk [τ ], (j < k) found at i-th iteration satisfies

{j(i), k(i), τ (i)} = argmax
j,k,τ

‖S(i)[τ ]‖∞, (5)

where j(i), k(i) and τ (i) are the corresponding row, column

and time lag index. An elementary delay matrix P
(i)(z)

and Jacobi rotation Q(i) are applied to bring r
(i)
jk [τ ] and

its complex conjugate r
(i)
kj [−τ ] onto the zero-lag (τ = 0)

coefficient matrix R(i−1)(0), and then rotate its energy onto

the diagonal. This results in R(i)(z) given by

R
(i)(z) = Q(i)P

(i)(z)R(i−1)(z)P̃
(i)
(z)QH(i). (6)

Then the elementary paraunitary matrix E(i)(z) can be ex-

pressed as

E(i)(z) = Q(i)P(i)(z). (7)

The algorithm continues its iterative process until all the off-

diagonal elements are smaller than a given threshold which

can be set to a very small value to achieve sufficient accuracy.

Assuming that the algorithm has converged at the N -th itera-

tion, the diagonalized para-Hermitian matrix in (4) takes the

form of

D(z) = diag{d1(z), d2(z), · · · , dM (z)}, (8)

and the generated paraunitary polynomial matrix is given by

H(z) =

N∏

i=1

E
(i)(z) = E

(N)(z) · · ·E(2)(z)E(1)(z). (9)

The procedure of the SBR2 algorithm is summarized in

Table I, and a 3-dimensional illustration of this whole process

is depicted in Fig. 1.

TABLE I
SUMMARY OF THE SBR2 ALGORITHM

1. Find the location of the maximum off-diagonal element

r
(i)
jk [τ ], i.e. {j

(i), k(i), τ (i)};

2. Time-shift r
(i)
jk [τ ] and r

(i)
kj [−τ ] onto the zero lag

coefficient matrix R(0) using P(i)(z);

3. Transfer energy onto diagonal using Jacobi rotation Q(i);

4. Return to step 1 until the stopping criterion satisfied.

IV. MULTICHANNEL SPECTRAL FACTORIZATION USING

THE SBR2 ALGORITHM

A. Outline of Algorithm

Given an input para-Hermitian polynomial matrix R(z), the
proposed multichannel spectral factorization method starts by

diagonalizing R(z) using the SBR2 algorithm, which results

in the diagonal matrix D(z) shown in (8). Each entry within
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Fig. 1. A 3-dimensional illustration of a 5× 5 polynomial matrix example,
showing the i-th iteration process using SBR2; Assuming the maximum off-

diagonal element r
(i)
jk

[τ ] found is at the location of {1, 5, 2} represented

in green color, step 1 shows the location information; Step 2 describes the
corresponding row and column shift operations; Step 3 is to transfer the
pairwise maximum elements onto diagonal [12], [17].

D(z) can be expressed as the product of its outer and inner

spectral factors, and so we may write

D(z) = diag{d1(z), d2(z), · · · , dM (z)} =

diag{d+1 (z), · · · , d
+
M (z)}diag{d−1 (z), · · · , d

−
M (z)}

= D
+(z)D−(z) ,

(10)

where d+i (z) and d
−
i (z) are the outer and inner spectral factors

of di(z) respectively, i ∈ {1, 2, · · · ,M}.

Each polynomial element di(z) withinD(z) defines a single
channel spectral factorization problem. In effect, the PEVD

transformation breaks the multichannel spectral factorization

problem down into a set of distinct single channel spectral fac-

torization problems. In this paper, the single channel spectral

factorization of di(z) is calculated using the Newton-Raphson

method, as adopted for the spf(·) function provided in the

MATLAB polynomial matrix toolbox from PolyX Ltd. [19].

Note that to form the minimum phase spectral factor of

di(z), corresponding to a stable filter, only the roots inside

the unit circle (|z| < 1) and half of those roots on the unit

circle (|z| = 1) can be chosen. In this case, it can be accurately

solved using, for example, Wilson’s algorithm [5]. In essence,

the PEVD algorithms build a bridge between multichannel and

single channel spectral factorization.

The spectral factors of the diagonal matrix D(z) in (10) are

then used to construct the spectral factor of the input para-

Hermitian R(z). By applying the inverse decomposition to

equation (4), we get

R(z) ≈ H̃(z)D(z)H(z) , (11)

and on substituting (10) into (11), this equation can be

rewritten as

R(z) = R
+(z)R−(z) ≈ H̃(z)D+(z)D−(z)H(z) . (12)

Note that the paraunitary matrix H(z) satisfies det{H(z)} =
az−∆, |a| = 1, [15], and the transformation required to

generate R+(z) does not affect the outer spectral factor

property of D+(z), such that

det{R+(z)} = det{H̃(z)D+(z)} = az−∆ det{D+(z)}

= az−∆
M∏

i=1

d+i (z) 6= 0, ∀|z| < 1 .

(13)

Thus,

det{D+(z)} 6= 0, ∀|z| < 1 , (14)

which means R(z) has to be full rank when applying the

PEVD. Therefore, the resulting outer spectral factor R
+(z)

can be estimated as H̃(z)D+(z), and the inner spectral

factor R−(z) as D−(z)H(z) which is the paraconjugate of

H̃(z)D+(z).

B. Order Shortening of Spectral Factor

As the polynomial orders ofH(z) andD(z) may potentially

increase with each iterative paraunitary transformation in the

SBR2 algorithm, the computed spectral factors can accumulate

time delays which are unnecessarily large. However, when the

outer and inner spectral factors are multiplied together, such

delays cancel and the resulting para-Hermitian polynomial

matrix is nonetheless accurate.

In order to keep the spectral factor order as low as possible,

the state-of-the-art approach [20] is employed to shorten the

order of the paraunitary matrixH(z) by using an indeterminate

paraunitary matrix U(z) represented by

U(z) = diag{z−τ1, z−τ2, · · · , z−τM} . (15)

In effect, each diagonal element within U(z) denotes a rel-

evant time delay which can help to shift the corresponding

column within H̃(z). Therefore, (12) can be rewritten as

R(z) ≈ H̃(z)D+(z)U(z)Ũ(z)D−(z)H(z)

= H̃(z)U(z)D+(z)D−(z)Ũ(z)H(z) ,
(16)

where the outer spectral factor is now H̃′(z)D+(z), and

H̃′(z) is the column-shifted paraunitary matrix, expressed by

H̃′(z) = H̃(z)U(z). Here U(z) acts as column-correction to

the paraunitary matrix H̃(z) in order to achieve the optimum

truncation in [20].

V. SIMULATION RESULTS

In order to demonstrate this method, the 2 × 2 para-

Hermitian matrix example in [6] has been tackled using our

algorithm. In this example we have

R1(z) =

[
2z−1 + 6 + 2z 7z−1 + 22 + 11z
11z−1 + 22 + 7z 38z−1 + 84 + 38z

]
. (17)

The SBR2 algorithm was used to diagonalize R1(z) with

a suitable trim function [12] to eliminate any redundant

zero or negligible small coefficients. The resulting diagonal

polynomial matrix D1(z) is shown by means of the stem plot

in Fig. 2, corresponding to the numerical result

D1(z) =

[
40z−1 + 90 + 40z 0

0 −0.01z−1 + 0.03− 0.01z

]
.

(18)
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Fig. 2. The diagonalized para-Hermitian matrix D1(z) for example (17).
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Fig. 3. The truncated outer spectral factor R+
1 (z) of example (17) using the

standard truncation method [21].

This confirms that the input R1(z) is almost generically rank

deficient but not quite. Accordingly the outer spectral factor

D+
1 (z) obtained by two separate applications of the spf(·)

function is

D+
1 (z) =

[
8.1 + 4.9z 0

0 0.17− 0.056z

]
. (19)

These results are all quoted to the standard accuracy given

by the PolyX toolbox. The final outer spectral factor R+
1 (z)

obtained by forming the product H̃1(z)D
+
1 (z) is shown in

Fig. 3. Here a standard truncation approach [12], [21] with

µ = 10−4 has been employed to remove 0.1h of the total

energy of D+
1 (z), which results in the spectral factor order

of 5. The stem plot in Fig. 3 depicts all the coefficients from

lag 0 to 5, but only coefficients at lags 4 and 5 are dominant.

The spectral factor generated has lots of very small values

which are effectively zero. In theory, if the polynomial matrix

has support on the interval from −t to t, the spectral factor

should be either from lags 0 to t or −t to 0. In our case, the

polynomial order of the spectral factor was increased due to

the paraunitary similarity transformation in SBR2 algorithm.

Truncating the very small coefficients was found to have very

little impact on the accuracy of the reconstituted parahermitian

polynomial matrix (almost identical to R1(z) formed by the
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Fig. 4. The CSD matrix of a simulated 3×3 broadband MIMO channel with
SNR 2.77 dB.

product of these spectral factors).

The accuracy of the proposed algorithm was assessed by

calculating the energy difference between R(z) and its re-

constitution R̂(z) generated by the product R+(z)R−(z).
Here the energy of a polynomial matrix is defined as squared

Frobenius norm ‖·‖2F, i.e. the sum of squares of the entries of

all the polynomial coefficient matrices, s.t.

‖R(z)‖
2
F =

∑

τ

M∑

k=1

M∑

l=1

|rkl[τ ]|
2

, (20)

where rkl[τ ] denotes the element in the k-th row and l-th col-

umn of the coefficient matrix for z−τ , k, l ∈ {1, 2, · · · ,M}.
Therefore, the accuracy of the spectral factor is evaluated by

υ =
Energy Difference

Total Input Energy
=

‖R(z)− R̂(z)‖2F
‖R(z)‖2F

. (21)

For the example problem in (17), the accuracy evaluator is

calculated as υ1 = 7.3834× 10−4/11296 ≈ 6.5363× 10−8.

The algorithm has been tested further by means of another,

more realistic example of a 3× 3 broadband MIMO propaga-

tion channel. The convolutive mixing was modeled by a 3× 3
polynomial matrix with coefficients selected randomly from a

uniform distribution in the range (−1, 1). The source signals

were represented by i.i.d. sequences for which each sample

was assigned the value ±1 with probability 1/2. Gaussian
random noise was added to the received signals with a signal-

to-noise ratio (SNR) of 2.77 dB.

The CSD matrix R2(z) for the received signals is plotted in

Fig. 4 with polynomial order of 14. By performing the PEVD

using SBR2, we get the diagonal matrix D2(z) plotted in

Fig. 5. The outer spectral factor R+
2 (z) generated by the prod-

uct of H̃2(z)D
+
2 (z), is suitably trimmed by using the standard

truncation method as introduced in [12], [21], which is shown

in Fig. 6 with blue circle marker stem plot. Further truncation

is implemented by using the row-shift corrected truncation

method [20], which results in the lower order spectral factor

R′+
2 (z) = R+

2 (z)U(z) represented by the red asterisk marker

stem plot. By analogy to the previous example, the accuracy
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+
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marker using the row-shift corrected truncation method [20].

of the two spectral factors which are truncated using different

approaches are computed according to (21), and the results

are given by υ2 = 0.1228/350.9744 ≈ 3.4988 × 10−4, and

υ′
2 = 0.3684/350.9744 ≈ 10−3. It is clear that the spectral

factor have been generated to a high degree of accuracy using

the novel method presented in this paper.

VI. CONCLUSION

The proposed spectral factorization method based on the it-

erative PEVD algorithm provides an alternative way of solving

multichannel spectral factorization problems, and it is seen to

offer a significant advantage in that the multichannel spectral

factorization problem is reduced to a number of independent

single channel problems for which suitable algorithms already

exist. Although the definition of the unique spectral factor

shown in [6] does not apply to our situation due to the fact

that the polynomial order increases with iterations, the validity

of the spectral factor found by our method has been proven.

In addition, the order of the spectral factor can be kept as

low as possible by exploiting the fundamental indeterminacy

property, which may benefit applications such as filter bank

design.
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