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Abstract

Single-degree-of-freedom (SDOF) elastic models are commonly used for gaining an understanding of

the response of structures to earthquake ground motions. The standard SDOF model used does not

account for the effect of gravity or the combined effect of horizontal and vertical excitations on horizontal

response. The purpose of this paper is to review previous work on this topic and to investigate a series

of SDOF models that do incorporate these effects and to compare their response to the response of the

standard model using 186 strong-motion records of near-field earthquake ground motions. It is found

that for most realistic SDOF models and most earthquake ground motions the effect of vertical excitation

on horizontal response is small.
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1 Introduction

Single-degree-of-freedom (SDOF) elastic models are commonly used for gaining an understanding of

the response of structures to earthquake ground motions. The standard SDOF model usually used does

not account for the effect of gravity or the combined effect of horizontal and vertical excitations on

horizontal response. There are a series of SDOF models in the literature that do include these effects,

however they have not been thoroughly investigated in the past. Therefore the purpose of this paper is a

more thorough examination of these models than has been undertaken before.

In this first section we introduce the SDOF models under investigation and review previous work on

these models. In later sections we study the different types of response of these models using a large

set of near-field earthquake ground motion records and compare their response to the response of the

standard model.

1.1 Standard model

Consider the SDOF system illustrated in Figure 1. This system consists of a massm driven by a horizon-

tal ground motion with accelerationUtt, with a spring with stiffnessk and a dashpot with a coefficient of

viscous dampingc. Let u(t) be the horizontal displacement of the mass at timet. Then using Newton’s

second law and resolving forces horizontally gives:

mutt + cut + ku + mUtt = 0

Dividing by m and lettingω2
0 = k/m andξ0 = c/2ω0m yields the well-known equation of motion:

1



utt + 2ξ0ω0ut + ω2
0u = −Utt. (1)

Equation 1 is usually used to model the response of structures to earthquake excitation, see for

example Chopra1.

1.2 Bending models

Structural models in this section behave as if their supporting beam-column bends; hence their failure

mechanism is buckling. From now on these SDOF models will be called bending models.

Consider the SDOF system illustrated in Figure 2(a). This is a massless beam-column, clamped in

the ground at the lower end, with a concentrated massm at the top. When the column is subjected to a

horizontal ground acceleration,Utt, the linearized equation of motion is2:

utt + 2ξ0ω0ut + ω2
0

(
1− mg

Pcr

)
u = −Utt. (2)

wherePcr is the critical load of the column. Lettingω2
1 = ω2

0(1 − γ) andξ1 = ξ0ω0/ω1 whereγ =

mg/Pcr then have:

utt + 2ξ1ω1ut + ω2
1u = −Utt. (3)

As can be seen by comparing Equation 1 with Equation 3 gravity loads simply change the natural

period of the system and do not alter the amplitude of the response (as long as the correct period is

considered).

This derivation shows one problem with using Equation 1 to characterise the response of structures

to horizontal seismic loading. If a fundamental period of the structure is found, by using a vibration

generator for instance, the structure behaves as if it is in a non-zero gravity field. Consequently the

period,T1 = 2π/ω1, and coefficient of critical damping,ξ1, found arenon-zero gravityvalues. A design

spectrum, constructed using Equation 1, should be consulted for the corresponding zero-gravity period,

T0 = 2π/ω0, and damping,ξ0, and not for the non-zero gravity values. ThusT1 and ξ1 should be

converted usingT0 = T1
√

1− γ andξ0 = ξ1
√

1− γ.

In practice though, since the concept of fundamental period and coefficient of critical damping for

a complicated structure are already approximations, failure to use the theoretically correct period and

damping coefficient is not serious. Forγ = 0.33, i.e. a factor of safety of three,T0 = 0.8T1 and

ξ0 = 0.8ξ1 thus the discrepancy is not large. As shown below the change of fundamental period due to

gravity is not the same for bending and hinging models, further complicating the situation.
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Consider the SDOF system illustrated in Figure 2(b). This model assumes that the structure is in-

finitely stiff vertically so that vertical displacements due to ground motion are constant throughout the

whole column therefore the vertical ground motion is the vertical input into the mass at the top of the

column, i.e. it is unaffected by the column.

The derivation of the equation of motion for the system depicted in Figure 2(b) follows the derivation

for when vertical ground motion is neglected, but Equation 2 becomes:

utt + 2ξ0ω0ut + ω2
0

(
1− m(g + Vtt)

Pcr

)
u = −Utt,

whereVtt is the vertical acceleration (positive downwards). Using the same transformations of variables

as before andβ = γ/g(1− γ) the equation of motion becomes:

utt + 2ξ1ω1ut + ω2
1(1− βVtt)u = −Utt. (4)

This model has been studied by a handful of authors to assess the effect of vertical accelerations on

the amplitude of the response for elastic systems, namely Lin and Shih2, Orabi and Ahmadi3, Loh and

Ma4 and Şafak5.

Lin and Shih2 use simulated accelerograms of Gaussian white noise modulated by an envelope func-

tion using dimensionless variables, through Fokker-Planck equations, in order to compute the expected

response. They mention that parametric resonance (see below) is possible but that because earthquakes

have short durations, such effects will not cause instability. They show that the correlation between ver-

tical and horizontal ground accelerations only has an effect on the structural response if the structure is

not initially at rest, hence this correlation can be ignored.

Although the use of dimensionless variables in Lin and Shih2 leads to a generalised method for

characterising the response of SDOF systems governed by Equation 4 it means that the results displayed

are not readily useable. They require transformations using realistic structural parameters, such as length

of column, natural period and load ratio, before the results can be used for design. Use of Gaussian

white noise to simulate the response of SDOF systems to earthquake strong motion is well established,

see for example Clough and Penzien6. Bycroft7 showed that it can be used to derive response spectra

which match quite well those from recorded accelerograms. The choices of power spectral density,

Φ11 = 0.0220 and0.0314 andΦ22 = 0.0141 and0.0201, made in Lin and Shih2 are unrealistically high.

Transforming these dimensionless power spectral densities intom2s−3 yields:φ11 = lω2
1(1−γ)Φ11 and

φ22 = π2lω2
1(1− γ)Φ22/12. For realistic values ofω1, l andγ φ11 � Φ11 andφ22 � Φ22. In Liu and

Jhaveri8 the power spectral densities given are all less than about0.009 m2s−3 and in Orabi and Ahmadi3

0.005544 m2s−3 is given as the power spectral density of the NS component of the El Centro record (from
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the El Centro earthquake, 19/5/1940). ThereforeΦ11 andΦ22 are much too high. This means that valid

conclusions cannot be drawn from their numerical examples. Lin9 noted that the numerical examples

given may be unrealistic although the theory is correct. Bycroft7 originally proposed the use of white

noise due to the dearth of actual recordings close to the source of large earthquakes. Today there are

many near-field recordings and these can be used rather than simulating strong motion through white

noise.

Orabi and Ahmadi3 also use simulated accelerograms of Gaussian white noise modulated using an

envelope function and Fokker-Planck equations to evaluate the stochastic response. Also they perform

Monte-Carlo simulations directly using segments of white noise in order to check the results. They base

the white noise used on the intensities of the NS and vertical components of the El Centro record. The

similarity between Monte-Carlo and results using the Fokker-Planck equations is noted for two envelope

functions: a constant function (stationary analysis) and an exponential envelope function (nonstationary

analysis). Both methods show an increase in response for large load ratios and larger increases for smaller

damping ratios. For example for the stationary analysis withξ1 = 0.02 andT1 = 6.3 s the increase in

root-mean-square displacement response asγ increases from0.5 to 0.9 is about5% but the increase in

response fromγ = 0.90 to 0.95 is about20%. For the same period but withξ = 0.20 the corresponding

increases are2% and7%. This shows the important influence of damping and load ratio on the effect of

vertical excitations for this model. They also find the relative velocity response spectrum of the El Centro

N-S record with and without vertical excitation for different load ratios. They note the similarity between

their theoretical results and the computed spectra, their conclusions on the importance of damping and

load ratio also hold for this accelerogram.

The study of Orabi and Ahmadi3 has a number of limitations. Their results rely on white noise with

simple envelope functions to represent the horizontal and vertical ground accelerations which may not

model all the characteristics of recorded earthquake strong motion. They also base their input ground

intensities on the El Centro record which is no longer one of the most intense ground motions avail-

able, thus their results underestimate how much the vertical ground motion may amplify the horizontal

response.

Şafak5 uses four near-field records, three from the Kocaeli earthquake (17/8/1999,Mw = 7.4)

(Yarmica, Izmit and Sakarya) and one from the Düzce earthquake (12/11/1999,Mw = 7.1) (Düzce),

to investigate the response of structures governed by Equation 4. Four different load ratios are used,

γ = 0, 0.2, 0.4 and0.6 and the displacement response spectra for5% damping for these differentγ

values are plotted for each fault-normal record. It is found that at long periods,T = 8.0 s, the spectral

displacements from the Sakarya record are2.5 times higher forγ = 0.6 than forγ = 0, which Şafak5
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suggests is because the amplitudes of the vertical and horizontal accelerations of similar size and that

this record has more long-period energy that those from other stations.

The main problem with the analysis of Şafak5 is that the displacement spectra are plotted in terms of

the non-zero gravity period and damping (see above) therefore the differences found are almost entirely

due to the effect of gravity on the natural period and damping and not because of the vertical ground

motion. Plotting the displacement spectra in terms of the non-zero gravity parameters makes it almost

impossible to distinguish the effect of the vertical excitation from the effect of gravity.

Loh and Ma4 is the only known published study of the response of SDOF systems governed by

Equation 4 which uses a large number of actual strong-motion records. Two parameters are mentioned as

important: the load ratio,γ, and the size of ratio between horizontal and vertical PGA. Thirty1 Taiwanese

records from a hard site are used to develop a uniform hazard response spectrum. Both the horizontal

and vertical accelerograms were normalised to have a PGA of1 g andγ = 0.5 was used (it was noted

that larger values ofγ caused instability although the reason is not given, see below) and uniform hazard

response spectra were computed which have the same probability of being exceeded at all periods. These

can then be scaled by the design level PGA to yield a design spectrum. They conclude that for5%

damping,γ = 0.5 and horizontal and vertical PGA normalised to1 g vertical excitation increases the

response by33% compared with when only horizontal excitation is considered.

Loh and Ma4 assume that the importance of vertical ground motion on the response of systems

governed by Equation 4 is only dependent on PGA and not the other factors known to influence ground

motion, e.g. magnitude, distance and local site conditions. It also is based on a vertical to horizontal

PGA ratio of unity which is larger than other studies have found. Therefore it may overestimate the

importance of vertical acceleration on bending SDOF systems although the authors do mention that a

different choice of this ratio may affect the results (see for example their Figure 12). Alsoγ = 0.5 is a

higher load ratio than imposed on most buildings.

Inelastic systems based on Equation 4 but with a non-linear force-displacement term have been inves-

tigated by Shih and Lin10. Following on from Lin and Shih2 they define their equation of motion in terms

of nondimensional quantities (although the nondimensional quantities are slightly different to those in

Lin and Shih2) which again makes the use of their results difficult. Material non-linearity of the structure

is modelled using a function proposed by Hata and Shibata, which is a simple hysteretic function with

one parameter,0 ≤ r < 1, which controls the non-linearity of the system (the system was assumed to

have yielded from the beginning). The ground accelerations are modelled as amplitude modulated Gaus-

sian white noise processes and the expected response is found through Fokker-Planck equations (also

1The caption of their Figure 7 says fifty records were used.
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used in Lin and Shih2 although complications arise due to the non-linearity of the system). Numerical

results for two different values ofr, 0.1 and0.5, and two levels of spectral density are presented. As for

Lin and Shih2 the spectral densities chosen,2πΦ11 = 1, 2 and3 and2πΦ22 = 0.64Φ11 are much too

large for earthquake excitation therefore the numerical results are not valid. They do find though (which

is probably not dependent on the incorrect spectral densities they use) that one hysteretic system can

behave very differently from another system when gravity and vertical accelerations are included. Thus

the results are more sensitive to model parameters than is so for linear elastic models.

Consider the SDOF system illustrated in Figure 2(c). This model assumes that the structure has finite

stiffness vertically and that vertically the column responds like a SDOF system governed by an equation

of motion like Equation 1 although not necessarily with the same damping and natural period as in the

horizontal direction. This means that the system is separable into the response vertically and the response

horizontally which is affected by the vertical response but not vice versa.

The equation of motion of this system is governed by:

utt + 2ξ1ω1ut + ω2
1(1− βuv

tt)u = −Utt, (5)

whereuv
tt = uv

tt(t, TV , ξV ) is the vertical response acceleration for vertical natural period,TV , and

dampingξV , i.e. utt from Equation 1 forω0 = 2π/TV , ξ0 = ξV and input acceleration,Vtt(t).

1.3 Hinging models

Structural models in this section behave as if their supporting beam-column is hinged at the base. From

now on these SDOF models will be called hinging models. Consider an inverted pendulum with an

elastic hinge at the base (Figure 3(a)). The equation of motion of this system is:

utt + 2ξ0ω0ut + (ω2
0 − g/l)u = −Utt. (6)

As for the bending case a transformation of variables is useful. Ifω2
0 > g/l (if this does not hold the

system does not oscillate but is unstable) then lettingω1 =
√

ω2
0 − g/l andξ1 = ξ0ω0/ω1:

utt + 2ξ1ω1ut + ω2
1u = −Utt. (7)

Requiringω2
0 > g/l gives a limit, i.e.l > mg/k, on the smallestl can be for the pendulum simply

to withstand gravity loads and so all structures must satisfy this condition, even if they are not designed

for earthquake loads.
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As for the bending model, a design spectrum constructed using equation 1 should be consulted for

the corresponding zero-gravity period,T0, and damping,ξ0, given byT0 = T1/
√

1 + T 2
1 g/[(2π)2l] and

ξ0 = ξ1/
√

1 + T 2
1 g/[(2π)2l] whereT1 andξ1 are non-zero gravity values.

Figure 4 shows the factor,1/
√

1 + T 2
1 g/[(2π)2l], againstT1 for different lengths of pendula,l. This

shows how much the natural period and damping changes when gravity forces are considered. As can be

seen the change in natural period and damping is only large for short columns and long periods.

Jennings and Husid11, Husid12, Sun et al.13, Bernal14 and Fenwick et al.15 all investigate this model

amongst others and conclude the effect of gravity is negligible, which it is ifl is reasonably long so that

the change in natural period and damping is small.

Jennings and Husid11 and Husid12 study a model similar to that specified in Equation 7, although

not making the assumption thatθ is small2, hence their equation of model is slightly more complex, for

elastoplastic and bilinear hysteretic structures. They consider many choices of natural period (0.5, 1.0,

1.5 and2.0 s) , length of pendulum (1.5, 3.0, 4.5, 6, 7.5 and9 m) and yield level (0.05 g and0.10 g) each

with damping of2% of critical. Simulated accelerograms of stationary Gaussian random processes of

60 s duration are used to investigate the time to collapse of such structures. They find that the time to

collapse depends hyperbolically on the ratio of earthquake strength to yield strength, linearly on length of

pendulum and is highly dependent on duration (for longer records less intense motion is required for the

structure to collapse), but it is independent of natural period. For the bilinear force-deformation relation,

if the ratio of the second slope to the initial slope is sufficiently high collapse is prevented. Results are

confirmed using actual accelerograms.

Sun et al.13 investigate a model similar to that specified in Equation 7 but for a force-displacement

curve which has ideal elastoplastic behaviour in extension and buckles at zero load in contraction using

phase-plane analysis. They find three equilibrium positions using static methods, conditions for when the

system will collapse and will suffer a residual displacement after the shaking has stopped. They use the

NS El Centro record to illustrate their results. Two design criteria are proposed based on the conditions

required for no large residual displacements and for no collapse, in terms of displacement spectra and

input energy.

Bernal14 computes amplification factors for gravity effects using four strong-motion records (Olympia

S86W, El Centro S00E, Taft S69E and Pacoima Dam S16E) in terms of a dimensionless stability coeffi-

cient and ductility factor for elastoplastic systems. A simple limit on the size of the stability coefficient,

θ = g/ω2
0l, is given based on earthquake codes. From this the conclusion is drawn that structures in

regions of relatively low seismic coefficients, i.e. low design acceleration, are less protected, by the in-

2They verify that there is little difference between predicted responses when this assumption is made and when it is not

made.
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terstorey drift limitation, against inelastic gravity effects than those in areas of higher design acceleration.

Systems with six ductilities (1, 2, 3, 4, 5 and6), nine stability coefficients (0 to 0.2) and 37 periods (0.2

to 2 s) were investigated for each of the records. No significant correlation was found between period

and amplification but an expression for predicting amplification due to gravity based on ductility and

stability coefficient is given. This expression was found to give different predictions than those given in

codes, some of which are shown to under predict amplification.

Fenwick et al.15 use a number of strong-motion records, although they base most of their results on

an artificial record of about25 s duration, to find amplification factors for elastoplastic and bilinear struc-

tures. They find that the strain hardening ratio (the ratio between the gradient of the first and second slope

of the bilinear force-deformation relation) is not significant for amplification but that viscous damping

does make a large difference. They use the Cholame Shandon Array 2W N65E record (from Parkfield

earthquake, 28/6/1966), which has a short duration of strong shaking, and compare the amplification

factors with those for the El Centro record and the artificial record and find they are much lower. Hence

duration has a large effect. They also find that for some records amplifications are not independent of

period over its entire period range. Equations are given for amplification factors in terms of ductility and

period for firm and flexible subsoils.

Consider the SDOF system illustrated in Figure 3(b). The derivation of the equation of motion for

this system follows that given in above but Equation 6 becomes (since vertical ground acceleration,Vtt,

acts like an additional gravity force):

utt + 2ξ0ω0ut + (ω2
0 − (g + Vtt)/l)u = −Utt. (8)

Defining ω1 andξ1 as before and lettingβ = 1/(ω2
0l − g) = 1/ω2

1l yields equation 4 again but with

differentξ1, ω1 andβ.

Jennings and Husid11 and Husid12 as part of their studies also apply vertical ground motion as well

as gravity loads and horizontal motion and find that vertical ground motion is relatively unimportant in

controlling the time to collapse.

Consider the SDOF system illustrated in Figure 3(c). As for the bending case, see Figure 2(c), this

model assumes that the structure is finitely stiff vertically and that vertically the column responds like a

SDOF system governed by an equation of motion like Equation 1 although with not necessarily the same

damping and natural period as in the horizontal direction. This means that the system is separable into

the response vertically and the response horizontally which is affected by the vertical response but not

vice versa. The equation of motion of this system is Equation 5 again but with differentξ1, ω1 andβ.

Tani and Soda16 present an investigation using a similar model to Equation 5 although using a bi-
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linear force-displacement relationship, with positive stiffness ratio, similar to that used by Shih and

Lin 10. They assume the structure continues to behave elastically in the vertical direction even when

plastic deformation takes place in the horizontal direction. Horizontal ground motion is assumed to be

quasi-nonstationary white noise and vertical excitation is stationary white noise. Statistical mean square

response of the system is expressed by a Voltera type integral equation and solved using Laplace trans-

forms. An equivalent linearization method is used to model the bilinear hysteresis which they find to be

accurate. Numerical results are given for ten models with different stiffness ratios,r, heights,H, yield

displacements and natural periods and for the three conditions: horizontal excitation only, horizontal and

gravity loads and horizontal and vertical excitation and gravity loads. All of their models have vertical

natural periods equal to a tenth of the the horizontal period, vertical damping equal to10% and horizontal

damping equal to2%. They conclude that gravity loads can be important, increasing the displacement

more than10%, for tall structures and especially those with small stiffness ratio. They find vertical

excitation can be ignored due to its small effect.

The study of Tani and Soda16 is small scale, only a few models are considered which do not cover

different combinations of horizontal and vertical natural period and damping which could occur in struc-

tures. They also do not subject their models to particularly large excitations, the PGA of their most

intense white noise excitation is6 ms−2 and the power spectral density of the vertical excitation of all of

their simulations is a quarter of the horizontal density.

1.4 Conclusions

This section shows that although some work has been completed on how vertical ground motion affects

structural response, many of these studies are too small scale for their conclusions to be general. Hence

there is a need for a more general approach using a range of structural models, structural parameters and

ground motion inputs to derive some general conclusions on the importance of vertical ground motion to

design.

Many of the SDOF system studies do not base their results on actual strong-motion recordings but on

white noise representation of ground shaking. Although white noise representation may yield adequate

estimates of the importance of vertical excitation for most earthquake ground motions which occur,

Newmark and Rosenblueth17, p. 302 state ‘[a]dditional confirmation of the orders of magnitude of

Monte Carlo results should in general be obtained from spotchecks using records of actual earthquakes’.

When white noise was first used to simulate strong-motion records, in the 1960s, there were few records

of actual earthquakes especially those from the near field of large earthquakes. Now though, there are

thousands of strong-motion recordings are available of which a large fraction are from the near field of
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reasonably large earthquakes, thus no longer do studies on the response of structures to simultaneous

horizontal and vertical excitation need to be solely based on white noise approximations.

Those studies which do use actual accelerograms often use only a handful and often they only use

the El Centro record, although many other records exist which are more reliable (due to better recording

and processing) and contain more intense motion. Thus a large suite of time-histories needs to be utilised

to give reliable conclusions which are based on ground motions which have actually occurred.

Newmark and Hall18 note that ‘it is still difficult to construct mathematical models that lead to

satisfactory results and that are not complicated to the point of becoming impractical for analysis of

complex structures’. Shih and Lin10 noted, specifically for combined horizontal and vertical excitation,

that two inelastic SDOF systems can behave very differently under the same seismic action. Therefore

an understanding the response of simple models is needed before complex models can be studied. An

investigation of these simple models follows.

2 Data used

We selected 186 free-field, chiefly triaxial strong-motion records from 42 earthquakes using the criteria:

Ms ≥ 5.8, distance to surface projection of ruptured ≤ 15 km and focal depthh ≤ 20 km. Because

of space limitations those chosen records and other tabulated material are listed in Ambraseys and Dou-

glas19. The majority (72%) came from western North America, the rest from Europe and from other parts

of the world. Their distribution with earthquake mechanism is: 98 or53% thrust, 72 or39% strike-slip

and 16 or9% normal. For more details see Ambraseys and Douglas19 and Ambraseys and Douglas20.

3 Stability

3.1 Bending model

Consider the homogenous Equation 4, i.e.Utt = 0, and letα = (1−βVtt) be constant for a given period

of time. Then looking for solutions of Equation 4 of the formu = Kept leads to the equation:

p = ω1(−ξ1 ±
√

ξ2
1 − α). (9)

Solutions of Equations 1, 3 & 7 correspond toα = 1, ω1 replaced byω0 andξ1 replaced byξ0 and

for both solutionsp has a negative real part therefore the amplitude of the motion decays with time. This

is not so in equation 9. Ifξ2
1−α > 0 and

√
ξ2
1 − α > ξ1 then one solution of equation 9 will be positive.

This means that one of the solutions of equation 4 has the formu = Kep+t wherep+ > 0, a solution
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which rapidly tends to∞ ast → ∞. Therefore ifβVtt > 1 for a reasonable length of time then the

displacements of the mass can become very large. This inequality is equivalent to:

Vtt >
g(1− γ)

γ
;

orγ >
1

Vtt/g + 1
. (10)

Once the column is displaced horizontally from the vertical gravity and positive vertical accelerations

mean it is easier for displacements of the mass horizontally to continue. As the displacement increases the

equivalent stiffness of the column decreases and so the mass continues to be deflected by more and more.

Only the application of a large negative vertical acceleration will counteract this process. Inequality 10

simply means that bending model cannot withstand forces (gravity plus vertical ground accelerations)

greater than its Euler buckling load,Pcr if they are sustained for a significant length of time. Note that

this upper limit onγ holds for all non-zero horizontal input motion.

3.1.1 Infinite vertical stiffness

All the records, with vertical components, in the dataset were used to study the onset of instability for

increasingγ. The response spectrum, for0, 2, 5, 10 and20% damping, of each horizontal component was

calculated forγ between0 and theγ which yieldsSA > 1000 ms−2 at one or more periods, increasing

in 0.01 unit intervals, orγ > 0.963. From each spectrum the largestSA for any period,SAmax(γ)

was found. Figure 5 showsSAmax(γ)/SAmax(γ = 0), i.e. amplification in response due to vertical

excitation, againstγ for one component(for 5% damping). The dashed line marks the boundary between

values ofγ where the system is stable andγ where Inequality 10 holds (γ = 0.58 for this record), i.e.

the system could be unstable if the amplitude of vertical acceleration was sustained.

Figure 5 shows that only for values ofγ close to the region of instability, aroundγ > 0.4, doesSA

significantly increase. It also shows thatSA of damped systems do not become unrealistically large, i.e.

high amplifications, untilγ is slightly larger, aboutγ > 0.65, than the smallest value where Inequality 10

holds. This is because the stability condition of the SDOF system is only violated for a short time and

large responses are not able to build up.

For each record it is found that the ratio of critical damping used does not strongly affect the value of

γ above which instability occurs. For example, for the Tabas N74E component instability occurs when

γ exceeds0.50, 0.62, 0.65, 0.68 and0.75 for 0, 2, 5, 10 and20% damping respectively (see Figure 5).

3Forγ > 0.96 the time to calculate the response became extremely long even for records with small vertical accelerations.
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For each value ofγ the minimum acceleration (limit acceleration) which satisfies Inequality 10

was calculated and the maximum length of time, in the records, for which accelerations higher than

this were sustained. Note this is not the total amount of time for which the recorded acceleration is

above a threshold but the maximum interval where accelerations are above a threshold. These inter-

vals are also a function ofγ. To calculate this the records were linearly interpolated. Figure 6 shows

SAmax(γ)/SAmax(γ = 0) against these calculated intervals for one component for5% damping.

Figure 6 shows that the SDOF system is still stable if the interval for which the ground acceleration

satisfies Inequality 10 is sufficiently small, less than about0.025 s, but for longer intervals the system’s

responses can become extremely large, i.e. it is unstable. All examined records show similar behaviour

although the length of the interval, during which the ground acceleration is above the limit acceleration,

required for instability to occur varies (Table 1). The interval lengths vary because the vertical ground ac-

celeration is a dynamic force and not static and also because of the effect of the combination of horizontal

and vertical excitation on the system.

As the load ratio,γ, increases the period of the peak response decreases because vertical ground

motion is usually of a higher frequency than the corresponding horizontal ground motion. For load ratios

large enough to increase the response significantly (i.e. close to the unstable region or within the unstable

region) the horizontal period at which the largest response occurs is usually between0.1 and0.2 s which

reflects the high frequency nature of vertical ground motion. Therefore Table 1 shows that instability

occurs if the length of the interval when Inequality 10 holds is greater than some fraction (usually about

an eighth to a quarter for realistic damping levels) of the horizontal period for which the instability

occurs (the most commonly interval given in Table 1 is estimated by a visual inspection of a graph such

as Figure 6 with all components plotted). Table 1 shows that damping does not have a strong influence

on the onset of instability due to too large a load ratio,γ.

The analysis shows that the SDOF systems governed by Equation 4 or 5 become unstable, i.e. the re-

sponse of the system is unphysically large, for earthquake loading when the vertical ground acceleration

is above a limit, given by simple Inequality 10, for longer than between0 and0.13 s and that the ratio of

critical damping present in the SDOF system does not have a large influence on this.

The limit on the length of the interval that produces unrealistically large responses is related to

the natural horizontal period of the system,Th. For systems with extremely short natural horizontal

periods (Th < 0.1 s) the critical length of interval approaches zero, i.e. if Inequality 10 holds for any

length of time during the earthquake then the system will become unstable. For systems with extremely

long natural horizontal periods (Th > 10 s) then the critical interval tends to the longest interval within

the acceleration time-history between zero crossings. This is shown in Table 2 using the Tabas N74E
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component. Due to the correction technique there is little energy in the period range of the records0 to

0.04 s and beyond5 s thus results for natural horizontal periods within these ranges may be unreliable.

Table 2 shows that limits on the critical interval mentioned above hold, i.e. for extremely short periods

the critical interval is also short and as period increases so does the critical interval reaching an upper

limit equal to the maximum time between zero crossings of acceleration (in this case0.50 s).

This result shows that the breakdown of the SDOF systems governed by Equation 4 or 5 is more

likely to occur for short-period than long-period systems because the high vertical acceleration which

induces instability only needs to be sustained for an extremely short time. For long period systems

the high vertical acceleration needs to be sustained for a longer time but this cannot be longer than the

maximum time between zero crossings.

For each record in the near-field set the maximum load ratio,γ, which can be used without Inequal-

ity 10 holding was calculated for both infinite and finite vertical stiffness (for natural vertical periods

between0.1 and2 s and2, 5, 10 and20% damping). This was done without considering the time the

vertical input acceleration is above the critical level. Figure 7 shows the maximum load ratio against the

cumulative total of records for which instability may occur for infinite and finite vertical stiffness.

Figure 7 shows that for load ratios of0.3 to 0.5 most vertical acceleration time-histories will not in-

duce instability for systems with infinite vertical stiffness. In fact for load ratios less than0.34 the infinite-

vertical-stiffness SDOF system will definitely not become unstable for any vertical time-history in the

set of records which includes the most intense vertical accelerations yet recorded (Nahanni 1 (Nahanni

earthquake, 23/12/1985), verticalPGA = 19.4 ms−2 [2 g]; El Centro 6 (Imperial Valley earthquake,

15/10/1979), verticalPGA = 15.5 ms−2 [1.6 g]; Victoria (Victoria earthquake, 9/6/1980), vertical

PGA = 14.7 ms−2 [1.5 g] and Tarzana (Northridge earthquake, 17/1/1994), verticalPGA = 10.3 ms−2

[1.0 g])). It is therefore unlikely that for realistic load ratios vertical acceleration will result in the failure

of such systems through instability.

3.1.2 Finite vertical stiffness

Figure 7 shows that for systems with finite vertical stiffness a number of vertical time-histories will

induce instability for load ratios of0.3 to 0.5 even for large vertical damping. Figure 7 shows that the

maximum load ratio which can be used for an analysis of all the records in the near-field set using the

bending model and finite vertical stiffness is about0.1 for 2 and5% damping, for10% damping it is

about0.15 and for20% damping it is about0.22. Thus for certain natural vertical periods and realistic

choices ofγ (0.3 to 0.5) the bending SDOF system will yield unrealistically large responses (due to the

system breaking down) for some of the near-field records. This precludes a general analysis.
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3.2 Hinging model

In the same way that a rough upper limit can be found for the bending equation of motions, a lower limit

on l can be found for the hinging equation of motions. Following the same steps as above it can be shown

that a large response may occur if:

l <
Vtt

ω2
1

or: Vtt > lω2
1

or: Vtt > lω2
0 − g (11)

If this inequality holds then the response of the hinging structure can become large. SinceT1 = 2π
ω1

this means that for structures with long natural periodsl has to be large for the structure to remain stable.

Inequality 11 is the same constraint as that placed onl, during the derivation of the equation of motion

when vertical ground acceleration is neglected (see above), modified due to the presence of vertical

ground motion.

All the records, with vertical components, in the near-field data set were also used to study the

onset of instability for decreasingl. The response spectrum, for0, 2, 5, 10 and20% damping, of each

horizontal component was calculated forl between5 m (for l this large, and for the period range of

interest, the vertical excitation has no effect) and thel which yieldsSA > 1000 ms−2 at one or more

periods, decreasing by a factor of0.95 each loop. From each spectrum the largestSA for any period,

SAmax(l) was found. Figure 8 showsSAmax(l)/SAmax(l = 5 m), i.e. amplification in response due

to vertical excitation, againstl for one component. Inequality 11 involves frequency (and hence period)

thus the boundary between the stable and unstable regions depends on period. The largest period,2 s,

gives the smallest criticall and this is used. In Figure 8 the dashed line marks the boundary between

values ofl where the system is stable andl where Inequality 11 holds (l = 0.74 m for this record and

natural period of2 s), i.e. the system could be unstable if the amplitude of the vertical acceleration was

sustained.

Figure 8 shows that Inequality 11 is extremely over conservative in its prediction of the stable region,

predicting that forl < 0.74 m stability could be a problem whereas in fact the response only increases

for l < 0.07 m and large responses indicative of instability only occur forl < 0.05 m. The reason for

the large difference is that vertical peak ground acceleration is usually associated with high frequency

waves which do not affect long period systems which are the ones for which instability is predicted using

Inequality 11. Unless a vertical strong motion record contains large amplitude long period accelerations

then instability is not a problem for realistic choices ofl nor does any amplification due to the vertical
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acceleration occur for realisticl values.

For each record it was found that the ratio of critical damping used did not strongly affect the value

of l below which instability occurs. For example, for the Tabas N74E component the value ofl below

which instability occurs is0.07, 0.06, 0.05, 0.05 and0.04 m for 0, 2, 5, 10 and20% damping respectively

((see Figure 8).

For each value ofl the minimum acceleration (limit acceleration) which satisfies Inequality 11 was

calculated and the maximum time the records show sustained accelerations higher than this. Note this

is not the total amount of time in the records which the acceleration was above a threshold but the

maximum interval where accelerations above a threshold were recorded. Also note that these intervals

are a function ofl and natural period. To calculate this the records were linearly interpolated. Figure 9

showsSAmax(l)/SAmax(l = 5m) against these calculated intervals for one component for5% damping.

Figure 9 shows that the SDOF system is still stable if the interval for which the ground acceleration

satisfies Inequality 11 is sufficiently small, less than about0.2 s, but for intervals longer than a certain

length of time the system’s responses are extremely large, i.e. it is unstable. All examined records show

similar behaviour although there is a range of intervals, during which the ground acceleration is above

the limit, required for instability (Table 3). The variation occurs because the vertical ground acceleration

is a dynamic force and not static and also because of the effect of the combination of horizontal and

vertical excitation on the system. The situation is further complicated because Inequality 11 is a function

not only ofl but also the natural period of the system.

This analysis shows that the SDOF systems governed by Equation 4 or 5 become unstable, i.e. the

response of the system is unphysically large, for earthquake loading when the vertical ground accelera-

tion is above a limit acceleration, given by simple Inequality 11, for longer than about0.05 to 1.3 s. Note

that the lengths of the column,l, for which instability can be a problem (l < 0.07 m for Tabas N74E

component, see Figure 8) are much less than occur in practice especially in long period systems where

Inequality 11 may be violated. Also the length of the intervals for which vertical accelerations satisfying

Inequality 11 are much longer than those for the bending model. Both these findings mean that large

amplification of horizontal response from vertical accelerations is extremely unlikely to occur in practice

for structures that can be modelled by the elastic hinging SDOF model.

For each record in the near-field set the minimum length of column,l, which can be used before

Inequality 11 holds is calculated for both infinite and finite vertical stiffness (for natural vertical periods

between0.1 and2 s and2, 5, 10 and20% damping). This was done without considering how long the

vertical input acceleration is above the critical level. The calculation for infinite vertical stiffness assumes

that the wave associated with vertical PGA is of sufficient period to cause instability in a system with
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natural horizontal period of2 s. For finite vertical stiffness the vertical spectral acceleration at each period

was used to calculate the minimum length of column and then the minimum length from all periods was

chosen. Figure 10 shows the minimum length of column against the cumulative total of records for which

instability may occur for infinite and finite vertical stiffness.

Figure 10 shows that for columns longer than2 m no vertical acceleration time-histories will induce

instability for systems with infinite vertical stiffness or finite vertical stiffness. In fact since vertical

PGAs are associated with high frequencies the situation for infinite vertical stiffness is much different

than Figure 10 suggests. This is because instabilities only occurs if accelerations over the critical level

of vertical acceleration are sustained for more than about0.1 s, as shown above, which will not be so for

the wave associated with vertical PGA. Thus this limit on the minimum length of column which can be

used is probably much less than1 m for both finite and infinite vertical stiffness. The records used for

this analysis includes the most intense vertical ground motions yet recorded so this means it is extremely

unlikely that hinging systems with a realistic length of column will fail through instability for any vertical

acceleration.

4 Parametric resonance

For certain combinations of vertical driving frequency,ΩV , and the naturalhorizontal frequencyω1,

systems governed by Equations 4 & 5 become dynamically unstable andhorizontalvibrations occur;

the amplitude of these vibrations rapidly become large. The frequencies at which a system approaches

such a resonance (so called parametric resonance) differs from that for ordinary forced vibrations. For

sufficiently small values of the longitudinal force this relationship isΩV = 2ω1
21.

The region of instability can be determined by finding the conditions under which Equations 4 & 5

have periodic solutions with period2T . Bolotin21 shows that the equations defining the boundary of the

unstable region are:

ΩV = 2ω1

√√√√1− 2ξ2 ±

√
4ξ4 − 4ξ2 +

(
AV β

2

)2

. (12)

ForΩV = 2ω1 this simplifies toAV β = 4ξ, which is about the largestAV β can be before parametric

resonance occurs. Figure 11 shows the regions of instability predicted by Equation 12 for different

damping levels,ξ againstAV β.

Although parametric resonance is important for periodic horizontal and vertical excitations of long

durations whether it can occur for non-periodic earthquake strong motions of relatively short duration

(usually less than about30 s of strong shaking) needs to be investigated. This is the subject of this section.
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4.1 Bending model

4.1.1 Finite vertical stiffness

Clough and Penzien6, pp. 522–525 show, from the power spectral density function, that SDOF systems

with reasonably low ratios of critical damping (ξ < 0.1) can be classified as narrow-band systems. This

means that the response of such systems to excitation will locally appear as a slightly distorted sine

function with a frequency near the natural frequency of the system with amplitudes that vary slowly in a

random fashion. Therefore the response,uv
tt, of a vertical SDOF system to a strong-motion record can be

approximated byuv
tt = Av cos(ωvt), whereAv is the amplitude andωv is the natural angular frequency

of the system. Hence Equation 5 becomes:

utt + 2ξ1ω1ut + ω2
1[1− βAv cos(ωvt)]u = −Utt.

Therefore parametric resonance is possible ifβAv > βc, whereβc = AV β for the critical value of

AV β for ωv from Equation 12. Hence if:

Av > βc/β, (13)

then parametric resonance (leading to large amplification of the horizontal response) can occur if such

vertical accelerations are sustained for a long enough time. An upper bound onAv is the maximum

spectral acceleration at the period and damping of interest for the vertical strong-motion record; this can

be found from acceleration response spectra.

The Tabas N74E and vertical components are used as an example of the importance of parametric

resonance withξ = 0.05 (5% critical damping in both horizontal and vertical directions) andγ = 0.25.

For ξ = 0.05 haveβc = 0.2 (using Figure 11) and forγ = 0.25 haveβ = 0.034 and therefore for

Av > 0.2/0.034 = 5.9 ms−2 parametric resonance is possible.

For each of the 46 periods between0.1 and2 s and for5% damping the response of the normal

SDOF model to the vertical ground motion was calculated and stored. Figure 14 shows the acceleration

response spectrum for the vertical component and5% damping. Also marked is the period range for

which parametric resonance is possible using Inequality 13. This shows that parametric resonance is

possible but only for vertical periods shorter than0.44 s.

The calculated vertical responses are used as the input to calculate the response spectrum, for5%

damping, of the N74E component using the bending model forγ = 0.25, i.e. solving Equation 5 with

uv
tt equal to the vertical response accelerations and−Utt equal to the horizontal ground acceleration.

Figure 15 shows the percentage increase in spectral acceleration due to the vertical ground motion for
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the response spectrum of the N74E component and the normal SDOF model. As can be seen parametric

resonance does occur for this record and it leads to an large increase (over700%) in the horizontal

spectral acceleration for horizontal and vertical natural periods0.36 and0.18 s respectively.

To assess the importance of parametric resonance generally the same system was subjected to another

strong-motion record. To make the comparison valid a search was made of the near-field records to find a

vertical time-history with an acceleration spectrum for5% damping close to that of the vertical spectrum

of the Tabas record (Figure 14). This means that differences in the effect of the vertical excitation are

not due simply to the amplitude of the vertical excitation. The vertical time-history which is the closest

match, in terms of the acceleration spectrum for5% damping, is that from 17645 Saticoy Street from the

Northridge earthquake (17/1/1994,Ms = 6.8). Figure 16 shows the acceleration spectrum which can be

compared with that of the Tabas record (Figure 14).

The sameγ (0.25) was used as for the Tabas record and the horizontal response spectrum for each

vertical period between0.1 and2 s was computed. Figure 17 shows the percentage increase in spectral

acceleration due to the vertical ground motion calculated for the response spectrum of the180◦ compo-

nent of the 17645 Saticoy Street record and the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase (over

300%) in the horizontal spectral acceleration for horizontal and vertical natural periods0.30 and0.15 s

respectively. Comparing Figures 15 and 17 shows that although parametric resonance does occur for

the 17645 Saticoy Street record, as predicted, it does not greatly increase the response as it does for the

Tabas record. This is probably due to the shorter duration of large amplitude motion in the 17645 Saticoy

Street record compared with the Tabas record. This difference in duration is shown in Figure 18 where

the vertical acceleration time-histories of these two records are compared.

The strong ground motion in the Tabas record lasts longer than that in the 17645 Saticoy Street

record because the Tabas earthquake (Ms = 7.3) is larger than the Northridge earthquake (Ms = 6.8).

Therefore because the large amplitude vertical responses required for parametric resonance do not occur

for as long in the 17645 Saticoy Street record there is less chance of such resonance causing large

increases in the horizontal response compared with the Tabas record. Therefore whether parametric

resonance causes large increases in the horizontal response for a particular record is not simply due to

the amplitude of the vertical excitation acceleration being large enough so that Inequality 13 holds but

also that these large excitations last for a sufficiently long time.

Figures 15 & 17 also show that when parametric resonance does not occur the amplifications due to

vertical ground motion are small (less than about10 or 20%). Hence if parametric resonance does not

occur then vertical ground motion does not have a large effect on horizontal response.
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Figure 19 shows the regions in which parametric resonance can occur in terms of vertical input

acceleration, horizontal damping,ξ, and load ratio,γ, using Inequality 13 for the bending model. For

example, this graph shows that for a constant harmonic input vertical acceleration with amplitude5 ms−2

parametric resonance will occur for a horizontal natural period equal to twice the period of the vertical

acceleration if the horizontal damping is equal to5% and the load ratio is greater than about0.3. If

the horizontal damping is increased to10% then the load ratio needs to be increased to about0.45 for

parametric resonance to occur.

As noted above instability occurs for some of the near-field records forγ > 0.1. This is much lower

than load ratios in most structures. Therefore no equations for the prediction of spectral acceleration

given magnitude, distance and site category using the bending model and finite vertical stiffness were

derived using the near-field dataset.

4.1.2 Infinite vertical stiffness

Equation 13 can be used to get a lower limit on the amplitude of the vertical ground acceleration required

for parametric resonance. However because ground motions are non-harmonic this is a poor estimator of

whether parametric resonance will occur.

Figure 12 shows that parametric resonance can occur for infinite vertical stiffness and bending mod-

els. Figure 12(a) clearly shows three peaks of large amplifications (up to about600%) due to the vertical

ground acceleration. These peaks occur at natural horizontal periods:0.12, 0.36 and0.42 s, which are

double the periods at which the largest vertical accelerations occur (see Figure 14) showing that these

amplifications are due to parametric resonance. These large amplifications though are not present if the

damping is increased to2% (see Figure 12(b)) even though Figure 19 shows that parametric resonance

is still possible (the graph should be considered for a vertical input acceleration equal to vertical PGA

which is7.3 ms−2 for this record).

Equations for the prediction of spectral acceleration given magnitude, distance and site category us-

ing the standard and bending models were derived using the near-field dataset, for details see Ambraseys

and Douglas19,20.

The inclusion of the vertical ground motion has little effect. Figure 13 shows the ratio between

the spectral acceleration including the effect of the vertical accelerations and not including the vertical

accelerations (note that this ratio is between models not including soil terms). For a site on the surface

projection of the rupture plane (i.e.d = 0 km) of an earthquake withMs = 7.8 the increase due to the

vertical accelerations is about8% and for smaller magnitudes and larger distances it is less. Therefore

the effect of vertical excitation on this type of SDOF system can be neglected when it stays stable.
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4.2 Hinging model

The situation for the hinging model is more complicated becauseβ is dependent on the natural horizontal

period of the system and also the length of the column.

4.2.1 Finite vertical stiffness

Figure 23 shows the acceleration response spectrum for the vertical component of the Tabas record

for 5% damping. Also marked is the period range for which parametric resonance is possible using

Inequality 13 withl = 0.5 m and horizontal damping of2%. This shows that for vertical periods longer

than0.65 s parametric resonance is possible but that for shorter periods than0.65 s it is impossible.

The calculated vertical responses are used as the input to calculate the response spectrum, for2%

damping, of the N74E component using the hinging model forl = 0.5 m, i.e. solving Equation 5 with

uv
tt equal to the vertical response accelerations and−Utt equal to the horizontal ground acceleration. Fig-

ure 24 shows the percentage increase in spectral acceleration due to the vertical ground motion calculated

using the response spectrum of the N74E component using the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase

(almost400%) in the horizontal spectral acceleration for horizontal and vertical natural periods1.9 and

0.95 s respectively. Also for short vertical periods (about0.2 s), corresponding to the peak in the vertical

response spectrum there is also a large increase in horizontal response for long horizontal periods which

is not caused by parametric resonance.

To assess the importance of parametric resonance generally the same system was subjected to an-

other strong-motion record. Figure 25 shows the acceleration spectrum of the 17645 Saticoy Street

record and the curve showing the period ranges where parametric resonance is possible forl = 0.5 m,

vertical damping5% and horizontal damping2%, which can be compared with that of the Tabas record

(Figure 23).

The samel (0.5 m) was used as for the Tabas record and the horizontal response spectrum for each

vertical period between0.1 and2 s was computed for2% damping. Figure 26 shows the percentage

increase in spectral acceleration due to the vertical ground motion calculated using the response spectrum

of the180◦ component of the 17645 Saticoy Street record using the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase

(almost300%) in the horizontal spectral acceleration for horizontal and vertical natural periods1.70 and

0.85 s respectively. Comparing Figures 24 and 26 shows that although parametric resonance does occur

for the 17645 Saticoy Street record, as is predicted, it does not greatly increase the response as does

the Tabas record. This is probably due to the smaller duration of large amplitude motion in the 17645
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Saticoy Street record compared with the Tabas record. The 17645 Saticoy Street record increases the

horizontal response for short vertical periods and long horizontal periods (Figure 26) in the same way as

the Tabas record (Figure 24). Note however that this choice of length of column,l = 0.5 m, is unrealistic

for normal structures.

Figure 27 shows the regions in which parametric resonance can occur in terms of vertical input ac-

celeration, horizontal damping,ξ, natural horizontal period and length of column,l, using Inequality 13

for the hinging model. For example, this graph shows that for a constant harmonic input vertical accel-

eration with amplitude5 ms−2 parametric resonance will occur for a horizontal natural period equal to

twice the period of the vertical acceleration if the horizontal damping is equal to5%, the length of the

column is equal to1 m and the natural horizontal period is greater than about1.3 s. If the length of the

column is increased to5 m then the horizontal damping needs to be decreased to about1% for parametric

resonance to occur.

Most vertical strong-motion records, even in the near field, do not contain enough energy in the long

period range for parametric resonance (defined by the regions of Figure 27) to occur. Figure 27 shows

that parametric resonance is most likely for long vertical periods (T > 1 s), very few structures though

have such a vertical period and hence it is unlikely that parametric resonance will lead to large increases

in the horizontal response of structures that can be modelled by SDOF systems with hinging.

Equations for the prediction of spectral acceleration given magnitude, distance and site category have

been derived for the hinging model with finite vertical stiffness, for5% horizontal and vertical damping,

l = 2 m and 46 horizontal and vertical periods between0.1 and 2 s, for details see Ambraseys and

Douglas19. Figure 28 shows a contour plot of the ratio between the predicted spectral acceleration when

vertical ground motion is included (finite vertical stiffness hinging model forl = 2m) and the predicted

spectral acceleration when it is ignored for7.8 at distance0 km. The maximum increase due to the

vertical excitation is about25% which occurs for a horizontal natural period of about2 s and a vertical

natural period of about1 s (Figure 28) and so is probably due to parametric resonance which occurs for

vertical periods which are half the horizontal period. The effect of vertical excitation on this type of

SDOF system can be neglected even when the vertical stiffness is finite.

4.2.2 Infinite vertical stiffness

Hjelmstad and Williamson22 state for the hinging model ‘[i]t is evident from the preceding discussion

[about parametric resonance leading to unbounded responses] that parametric resonance associated with

vertical motions, could be a concern in earthquake response of structures if the input motion exhibits near

periodicity, as was true in the 1985 earthquake, experienced in the the Mexico City lake bed region. One
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should note that the values ofη [here calledβ] in building structures are typically rather small, thereby

limiting the troublesome range of frequencies associated with parametric resonance.’

This idea was tested using a record of the Michoacán (19/9/1985) from Mexico City (CDAF de

Abastos Oficia) which is on very soft soil (Vs,30 = 61 ms−1) and exhibits sinusoidal (see Figure 20)

ground motion with period about2 to 3 s. Figure 21 shows the percentage increase in the horizontal

spectral acceleration due to the vertical ground motion for this record withl = 0.25 m, 5% vertical

damping and0% horizontal damping. From Figure 21 it can be seen that there is an increase in the

horizontal response due to parametric resonance at periods greater than about3 s. However, the length

of column required to cause this increase is not realistic.

Equations for the prediction of spectral acceleration given magnitude, distance and site category us-

ing the standard and hinging models were derived using the near-field dataset, for details see Ambraseys

and Douglas19,20.

The inclusion of the vertical ground motion has little effect. Figure 22 shows the ratio between

the spectral acceleration with and without the effect of the vertical accelerations (note that this ratio

is between models not including soil terms). For a site0 km from an earthquake withMs = 7.8 the

increase due to the vertical accelerations is about9% and for smaller magnitudes and larger distances it

is less. Therefore the effect of vertical excitation on this type of SDOF system can be neglected when it

stays stable.

5 Conclusions

The two elastic SDOF models studied for this article, the bending and the hinging models, both have

three main types of behaviour: normal, parametric resonance and instability. The type of behaviour the

system exhibits is controlled by the combination of system parameters and the vertical input acceleration.

The systems are unstable when the multiplier of horizontal displacement in the equation of the motion

is negative for a sufficiently long period of time so that exponential solutions of the equation are possible

and the systems collapse because the displacement (and velocity and accelerations) tend to infinity. This

limit is simply the stability criterion that the system must obey in the static case modified due to vertical

ground motion.

The length of interval above the critical acceleration required to induce instability is related to the

horizontal natural period of the system: short period systems require shorter intervals than long period

systems. The length of interval of above critical accelerations required for instability in bending systems

with periods between0.1 and2 s is about0.05 s. The length of interval of above critical accelerations

required for instability in hinging systems with periods between0.1 and2 s is greater than that for the
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bending model and is equal to about0.2 s. Size of horizontal damping of either system has little effect

on the length of time that is required to cause instability.

A number of vertical records do induce instability in SDOF models with bending and finite vertical

stiffness for load ratios of about0.3 to 0.5. Therefore such a failure mechanism is possible for structures

that can be modelled by such SDOF models.

No recorded vertical ground motions induce instability in SDOF systems with hinging for realistic

length of columns (greater than1 m) and horizontal and vertical damping and period. Therefore such a

failure mechanism is not possible for structures that can be modelled by such SDOF models.

The systems exhibit parametric resonance when the amplitude of the vertical acceleration is greater

than a limit acceleration and the period of this vertical acceleration is half the natural horizontal period.

This limit acceleration depends on the structural parameters: horizontal damping and length of column

(for the hinging model) or load ratio (for the bending model). Parametric resonance can lead to large

increases (up to700%) in the horizontal response of bending systems with realistic structural parameters.

Although parametric resonance can lead to large increases (up to300%) in the horizontal response of

hinging systems these increases are for unrealistic structural parameters, i.e. extremely short columns

with large horizontal and vertical periods so parametric resonance is not likely to occur in structures

that approximate to hinging models. The duration of the strong motion affects the size of the increase

in horizontal response due to parametric resonance so longer durations of strong motion lead to large

increases in response because parametric resonance can build up. For infinite vertical stiffness parametric

resonance can occur but this is only for structural parameters which are unlikely to occur in practice.

When the combination of system parameters and vertical input accelerations means that instability

and parametric resonance do not occur then the system behaves almost the same as the ordinary zero-

gravity system defined by Equation 1. The amplifications due to the vertical excitation are small. For

most vertical ground motions and realistic choices of system parameters this is the type of behaviour

which will occur.
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Damping Min. and max. Most common
ratio (%) interval lengths (s) interval lengths (s)
0 0 and0.05 0 to 0.03
2 0 and0.06 0 to 0.04
5 0.005 and0.08 0.02 to 0.06
10 0.01 and0.08 0.02 to 0.07
20 0.01 and0.13 0.04 to 0.09

Table 1: Minimum, maximum and the most common length of intervals, for which the vertical accelera-
tion is above the limit that causes instability in bending model.

Th Length of Th Length of
( s) interval (s) ( s) interval (s)
0.01 0.01 1.0 0.11
0.02 0.02 2.0 0.22
0.05 0.025 5.0 0.48
0.1 0.03 10.0 0.50
0.2 0.05 20.0 0.50
0.5 0.07 50.0 0.50

Table 2: Horizontal natural period of system against length of interval over the critical acceleration
defined by Inequality 10 required to cause instability for the Tabas N74E component and5% damping.

Damping Min. and max. Most common
ratio (%) interval lengths (s) interval lengths (s)
0 0.05 to 0.9 0.1 to 0.2
2 0.05 to 1.0 0.1 to 0.25
5 0.1 and1.2 0.15 to 0.25
10 0.1 and1.2 0.15 to 0.3
20 0.1 and1.3 0.15 to 0.3

Table 3: Minimum, maximum and the most common length of intervals, for which the vertical accelera-
tion is above limit which causes instability in hinging model.
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Figure captions

1. Structural model for zero gravity field where vertical acceleration is neglected.

2. Bending structural model:

(a) for non-zero gravity field where vertical ground motion is neglected.

(b) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
infinite.

(c) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
finite.

3. Hinging structural model:

(a) for non-zero gravity field where vertical ground motion is neglected.

(b) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
infinite.

(c) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
finite.

4. Factor,1/
√

1 + T 2
1 g/[(2π)2l], againstT1 for length of pendulum,l = 5, 10, 15, 20 and25 m.

5. Amplification in maximum spectral acceleration due to vertical excitation againstγ for Tabas
N74E component (from Tabas earthquake, 16/9/1978) (bending model).

6. Amplification in maximum spectral acceleration due to vertical excitation against maximum inter-
val above limit acceleration for Tabas N74E component (bending model).

7. Maximum load ratio against cumulative number of records for which Inequality 10 holds for nat-
ural vertical periods between0.1 and2 s.

8. Amplification in maximum spectral acceleration due to vertical excitation againstl for Tabas N74E
component (hinging model).

9. Amplification in maximum spectral acceleration due to vertical excitation against maximum inter-
val above limit acceleration for Tabas N74E component (hinging model).

10. Minimum length of column against cumulative total number of records for which Inequality 11
holds for natural vertical periods between0.1 and2 s.

11. Graph showing regions of instability where parametric resonance occurs. Parametric resonance
occurs within the region to the right of each line.

12. Percentage increase in spectral acceleration due to the vertical ground motion for infinite vertical
stiffness for the N74E component of the Tabas strong-motion record.

(a) Undamped

(b) 2% damping

13. Ratio between the predicted spectral acceleration for the bending model (γ = 0.3) and for the
standard model.

14. Absolute acceleration response spectrum of the vertical component of the Tabas record for5%
damping. Dashed line indicates lowest amplitude of vertical acceleration required for parametric
resonance forγ = 0.25.
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15. Percentage increase in spectral acceleration due to the vertical ground motion for finite vertical
stiffness,5% damping andγ = 0.25 for the N74E component of the Tabas strong-motion record.

16. Like Figure 14 but for the vertical component of the 17645 Saticoy Street record from the Northridge
(17/1/1994) earthquake.

17. Like Figure 15 but for the180◦ component of the 17645 Saticoy Street strong-motion record.

18. Vertical acceleration time-histories.

(a) 17645 Saticoy Street (Mw = 6.7, Ms = 6.8)

(b) Tabas (Mw = 7.4, Ms = 7.3)

19. Parametric resonance can occur for combinations ofξ andγ which are above line corresponding
to the vertical input acceleration.

20. Vertical acceleration time-history from Mexico City (CDAF de Abastos Oficia) of the Michoacán
earthquake (19/9/1985).

21. Percentage increase in spectral acceleration due to the vertical ground motion for infinite vertical
stiffness,5% vertical damping,0% horizontal damping andl = 0.25 m for the N000 component
of the Mexico City (CDAF de Abastos Oficia) strong-motion record.

22. Ratio between the predicted spectral acceleration for hinging model(l = 2m) and for the standard
model.

23. Absolute acceleration response spectrum of the vertical component of the Tabas record for5%
damping. Dashed line marks the lowest amplitude of vertical acceleration required for parametric
resonance for2% horizontal damping andl = 0.5 m.

24. Percentage increase in spectral acceleration due to the vertical ground motion for finite vertical
stiffness,5% damping vertically and2% damping horizontally andl = 0.5 m for the N74E com-
ponent of the Tabas strong-motion record.

25. Like Figure 23 but for the vertical component of the 17645 Saticoy Street record.

26. Like Figure 24 but for the180◦ component of the 17645 Saticoy Street strong-motion record.

27. Parametric resonance can occur for combinations ofξ, T andl which are above line corresponding
to the vertical input acceleration.

(a) l = 1m

(b) l = 5m

28. Ratio between the predicted spectral acceleration for hinging model (l = 2 m) and the standard
model (Ms = 7.8, d = 0km).

28



Figure 1:

(a) (b) (c)

Figure 2:

(a) (b) (c)

Figure 3:

29



0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

5

10

15
20
25

T
1
 [s]

F
ac

to
r

Figure 4:

0 0.2 0.4 0.6 0.8 1

1

2

5

10

20

50

100

γ

S
A

(γ
)/

S
A

(γ
=

0)

Stable

Unstable

0%

2%

5%

10%
20%

Figure 5:

0 0.01 0.02 0.03 0.04 0.05

1

2

5

10

20

50

100

γ

S
A

(γ
)/

S
A

(γ
=

0)

Figure 6:

30



← Infinite vertical stiffness
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Figure 14:

34



Figure 15:
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