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Abstract

Single-degree-of-freedom (SDOF) elastic models are commonly used for gaining an understanding of
the response of structures to earthquake ground motions. The standard SDOF model used does not
account for the effect of gravity or the combined effect of horizontal and vertical excitations on horizontal
response. The purpose of this paper is to review previous work on this topic and to investigate a series
of SDOF models that do incorporate these effects and to compare their response to the response of the
standard model using 186 strong-motion records of near-field earthquake ground motions. It is found
that for most realistic SDOF models and most earthquake ground motions the effect of vertical excitation
on horizontal response is small.
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1 Introduction

Single-degree-of-freedom (SDOF) elastic models are commonly used for gaining an understanding of
the response of structures to earthquake ground motions. The standard SDOF model usually used does
not account for the effect of gravity or the combined effect of horizontal and vertical excitations on
horizontal response. There are a series of SDOF models in the literature that do include these effects,
however they have not been thoroughly investigated in the past. Therefore the purpose of this paper is a
more thorough examination of these models than has been undertaken before.

In this first section we introduce the SDOF models under investigation and review previous work on
these models. In later sections we study the different types of response of these models using a large
set of near-field earthquake ground motion records and compare their response to the response of the

standard model.

1.1 Standard model

Consider the SDOF system illustrated in Figure 1. This system consists of anths&n by a horizon-
tal ground motion with acceleratidii;, with a spring with stiffnesg and a dashpot with a coefficient of
viscous damping. Letu(t) be the horizontal displacement of the mass at timEhen using Newton’s

second law and resolving forces horizontally gives:

mugt + cup + ku +mUy =0

Dividing by m and lettingw2 = k/m and&y = ¢/2wom yields the well-known equation of motion:



ugy + 26owotty + wiu = —Uy. (1)

Equation 1 is usually used to model the response of structures to earthquake excitation, see for

example Chopra

1.2 Bending models

Structural models in this section behave as if their supporting beam-column bends; hence their failure
mechanism is buckling. From now on these SDOF models will be called bending models.

Consider the SDOF system illustrated in Figure 2(a). This is a massless beam-column, clamped in
the ground at the lower end, with a concentrated nmasg the top. When the column is subjected to a

horizontal ground acceleratiotiy;, the linearized equation of motior?s

m
Uy + 2&owour + wg (1 — Pg> u = —Upg. (2)
cr

where P, is the critical load of the column. Letting? = w2(1 — v) and&; = &uwo/w1 wherey =

mg/ P, then have:

ug + 26 w1us + wiu = —Uy. (3)

As can be seen by comparing Equation 1 with Equation 3 gravity loads simply change the natural
period of the system and do not alter the amplitude of the response (as long as the correct period is
considered).

This derivation shows one problem with using Equation 1 to characterise the response of structures
to horizontal seismic loading. If a fundamental period of the structure is found, by using a vibration
generator for instance, the structure behaves as if it is in a non-zero gravity field. Consequently the
period, T} = 27 /w1, and coefficient of critical damping; , found arenon-zero gravityalues. A design
spectrum, constructed using Equation 1, should be consulted for the corresponding zero-gravity period,
Ty = 2m/wy, and damping&y, and not for the non-zero gravity values. THOsand&; should be
converted usingp = T1v/1 — v and§y = &1 — 7.

In practice though, since the concept of fundamental period and coefficient of critical damping for
a complicated structure are already approximations, failure to use the theoretically correct period and
damping coefficient is not serious. Fer= 0.33, i.e. a factor of safety of thred, = 0.87; and
& = 0.8 thus the discrepancy is not large. As shown below the change of fundamental period due to

gravity is not the same for bending and hinging models, further complicating the situation.



Consider the SDOF system illustrated in Figure 2(b). This model assumes that the structure is in-
finitely stiff vertically so that vertical displacements due to ground motion are constant throughout the
whole column therefore the vertical ground motion is the vertical input into the mass at the top of the
column, i.e. it is unaffected by the column.

The derivation of the equation of motion for the system depicted in Figure 2(b) follows the derivation

for when vertical ground motion is neglected, but Equation 2 becomes:

m(g + V;
gt + 28owous + w(Q) <1 — (gtt)> u = —Uy,

PCT'
whereV/; is the vertical acceleration (positive downwards). Using the same transformations of variables

as before ang = v/g(1 — ~) the equation of motion becomes:

U + 2§ wrug + w%(l — BVi)u = —Uy. (4)

This model has been studied by a handful of authors to assess the effect of vertical accelerations on
the amplitude of the response for elastic systems, namely Lin and,Sbihbi and Ahmadi, Loh and
Ma* and SafaR.

Lin and Shil? use simulated accelerograms of Gaussian white noise modulated by an envelope func-
tion using dimensionless variables, through Fokker-Planck equations, in order to compute the expected
response. They mention that parametric resonance (see below) is possible but that because earthquakes
have short durations, such effects will not cause instability. They show that the correlation between ver-
tical and horizontal ground accelerations only has an effect on the structural response if the structure is
not initially at rest, hence this correlation can be ignored.

Although the use of dimensionless variables in Lin and 3héads to a generalised method for
characterising the response of SDOF systems governed by Equation 4 it means that the results displayed
are not readily useable. They require transformations using realistic structural parameters, such as length
of column, natural period and load ratio, before the results can be used for design. Use of Gaussian
white noise to simulate the response of SDOF systems to earthquake strong motion is well established,
see for example Clough and PenZAemycroft’ showed that it can be used to derive response spectra
which match quite well those from recorded accelerograms. The choices of power spectral density,
®1; = 0.0220 and0.0314 and®,, = 0.0141 and0.0201, made in Lin and Shikhare unrealistically high.
Transforming these dimensionless power spectral densitiesityo® yields: ¢1; = lw?(1 —~)®1; and
Bo2 = T2lw? (1 — ) ®ay/12. For realistic values afy, I andy ¢11 > ®17 andgas >> ®99. In Liu and
Jhaverf the power spectral densities given are all less than @b m?2s~3 and in Orabi and Ahmadi

0.005544 m?s—3 is given as the power spectral density of the NS component of the El Centro record (from



the El Centro earthquake, 19/5/1940). Therefbre and®-5 are much too high. This means that valid
conclusions cannot be drawn from their numerical examples? hated that the numerical examples

given may be unrealistic although the theory is correct. Byéroftginally proposed the use of white

noise due to the dearth of actual recordings close to the source of large earthquakes. Today there are
many near-field recordings and these can be used rather than simulating strong motion through white
noise.

Orabi and Ahmadi also use simulated accelerograms of Gaussian white noise modulated using an
envelope function and Fokker-Planck equations to evaluate the stochastic response. Also they perform
Monte-Carlo simulations directly using segments of white noise in order to check the results. They base
the white noise used on the intensities of the NS and vertical components of the El Centro record. The
similarity between Monte-Carlo and results using the Fokker-Planck equations is noted for two envelope
functions: a constant function (stationary analysis) and an exponential envelope function (nonstationary
analysis). Both methods show an increase in response for large load ratios and larger increases for smaller
damping ratios. For example for the stationary analysis @ith= 0.02 andT; = 6.3 s the increase in
root-mean-square displacement response iasreases fron).5 to 0.9 is abouts% but the increase in
response fromy = 0.90 to 0.95 is about20%. For the same period but with= 0.20 the corresponding
increases ar2% and7%. This shows the important influence of damping and load ratio on the effect of
vertical excitations for this model. They also find the relative velocity response spectrum of the El Centro
N-S record with and without vertical excitation for different load ratios. They note the similarity between
their theoretical results and the computed spectra, their conclusions on the importance of damping and
load ratio also hold for this accelerogram.

The study of Orabi and Ahmatihas a number of limitations. Their results rely on white noise with
simple envelope functions to represent the horizontal and vertical ground accelerations which may not
model all the characteristics of recorded earthquake strong motion. They also base their input ground
intensities on the El Centro record which is no longer one of the most intense ground motions avail-
able, thus their results underestimate how much the vertical ground motion may amplify the horizontal
response.

Safalk® uses four near-field records, three from the Kocaeli earthquake (17/8/1899= 7.4)
(Yarmica, Izmit and Sakarya) and one from th&Zde earthquake (12/11/1998/,, = 7.1) (Dizce),
to investigate the response of structures governed by Equation 4. Four different load ratios are used,
~ =0, 0.2, 0.4 and0.6 and the displacement response spectrafordamping for these different
values are plotted for each fault-normal record. It is found that at long pefidds3.0s, the spectral

displacements from the Sakarya record afetimes higher fory = 0.6 than fory = 0, which Safak



suggests is because the amplitudes of the vertical and horizontal accelerations of similar size and that
this record has more long-period energy that those from other stations.

The main problem with the analysis of Saf4k that the displacement spectra are plotted in terms of
the non-zero gravity period and damping (see above) therefore the differences found are almost entirely
due to the effect of gravity on the natural period and damping and not because of the vertical ground
motion. Plotting the displacement spectra in terms of the non-zero gravity parameters makes it almost
impossible to distinguish the effect of the vertical excitation from the effect of gravity.

Loh and Md is the only known published study of the response of SDOF systems governed by
Equation 4 which uses a large number of actual strong-motion records. Two parameters are mentioned as
important: the load ratioy, and the size of ratio between horizontal and vertical PGA. Thifjwanese
records from a hard site are used to develop a uniform hazard response spectrum. Both the horizontal
and vertical accelerograms were normalised to have a PGAy@nd~y = 0.5 was used (it was noted
that larger values of caused instability although the reason is not given, see below) and uniform hazard
response spectra were computed which have the same probability of being exceeded at all periods. These
can then be scaled by the design level PGA to yield a design spectrum. They conclude fifat for
damping,y = 0.5 and horizontal and vertical PGA normaliseditg vertical excitation increases the
response bp3% compared with when only horizontal excitation is considered.

Loh and M& assume that the importance of vertical ground motion on the response of systems
governed by Equation 4 is only dependent on PGA and not the other factors known to influence ground
motion, e.g. magnitude, distance and local site conditions. It also is based on a vertical to horizontal
PGA ratio of unity which is larger than other studies have found. Therefore it may overestimate the
importance of vertical acceleration on bending SDOF systems although the authors do mention that a
different choice of this ratio may affect the results (see for example their Figure 12)4Als0.5 is a
higher load ratio than imposed on most buildings.

Inelastic systems based on Equation 4 but with a non-linear force-displacement term have been inves-
tigated by Shih and Litf. Following on from Lin and Shikthey define their equation of motion in terms
of nondimensional quantities (although the nondimensional quantities are slightly different to those in
Lin and Shil?) which again makes the use of their results difficult. Material non-linearity of the structure
is modelled using a function proposed by Hata and Shibata, which is a simple hysteretic function with
one parametef) < r < 1, which controls the non-linearity of the system (the system was assumed to
have yielded from the beginning). The ground accelerations are modelled as amplitude modulated Gaus-

sian white noise processes and the expected response is found through Fokker-Planck equations (also

The caption of their Figure 7 says fifty records were used.



used in Lin and Shihalthough complications arise due to the non-linearity of the system). Numerical
results for two different values af 0.1 and0.5, and two levels of spectral density are presented. As for

Lin and Shil? the spectral densities choséx,®,; = 1, 2 and3 and27®5, = 0.649; are much too

large for earthquake excitation therefore the numerical results are not valid. They do find though (which
is probably not dependent on the incorrect spectral densities they use) that one hysteretic system can
behave very differently from another system when gravity and vertical accelerations are included. Thus
the results are more sensitive to model parameters than is so for linear elastic models.

Consider the SDOF system illustrated in Figure 2(c). This model assumes that the structure has finite
stiffness vertically and that vertically the column responds like a SDOF system governed by an equation
of motion like Equation 1 although not necessarily with the same damping and natural period as in the
horizontal direction. This means that the system is separable into the response vertically and the response
horizontally which is affected by the vertical response but not vice versa.

The equation of motion of this system is governed by:

Ut + 2§1w1ut + w%(l — Buft)u = _Utt7 (5)

whereuy, = ug(t, Ty, &y ) is the vertical response acceleration for vertical natural pefigd,and

dampingy, i.e. uy from Equation 1 forwy = 27/Ty, & = &y and input acceleratior ().

1.3 Hinging models

Structural models in this section behave as if their supporting beam-column is hinged at the base. From
now on these SDOF models will be called hinging models. Consider an inverted pendulum with an

elastic hinge at the base (Figure 3(a)). The equation of motion of this system is:

uy + 26wour + (Wi — g/l)u = —Uy. (6)

As for the bending case a transformation of variables is usefuf i ¢/! (if this does not hold the

system does not oscillate but is unstable) then letting= /w3 — g/l and&; = &owo/wi:

Uy + 281wy up + w%u = —Uy. (7

Requiringw? > g¢/I gives a limit, i.e.l > mg/k, on the smallest can be for the pendulum simply
to withstand gravity loads and so all structures must satisfy this condition, even if they are not designed

for earthquake loads.



As for the bending model, a design spectrum constructed using equation 1 should be consulted for

the corresponding zero-gravity perid, and dampingéy, given byTy = Ty /+/1 + TZg/[(27)2I] and

& = &1 /\/1+ T?g/[(2m)21] whereT; andé; are non-zero gravity values.

Figure 4 shows the factor/+/1 + T2g/[(27)2l], againstl} for different lengths of penduld, This
shows how much the natural period and damping changes when gravity forces are considered. As can be
seen the change in natural period and damping is only large for short columns and long periods.

Jennings and Husfd, Husid'?, Sun et al*®, Bernal* and Fenwick et al? all investigate this model
amongst others and conclude the effect of gravity is negligible, which it is ifeasonably long so that
the change in natural period and damping is small.

Jennings and Husfd and Husid? study a model similar to that specified in Equation 7, although
not making the assumption théis smalP, hence their equation of model is slightly more complex, for
elastoplastic and bilinear hysteretic structures. They consider many choices of natural @é&ridd) (

1.5 and2.0s) , length of pendulumi(5, 3.0, 4.5, 6, 7.5 and9 m) and yield level (.05 g and0.10 g) each

with damping of2% of critical. Simulated accelerograms of stationary Gaussian random processes of

60 s duration are used to investigate the time to collapse of such structures. They find that the time to
collapse depends hyperbolically on the ratio of earthquake strength to yield strength, linearly on length of
pendulum and is highly dependent on duration (for longer records less intense motion is required for the
structure to collapse), but it is independent of natural period. For the bilinear force-deformation relation,

if the ratio of the second slope to the initial slope is sufficiently high collapse is prevented. Results are

confirmed using actual accelerograms.

Sun et al'3 investigate a model similar to that specified in Equation 7 but for a force-displacement
curve which has ideal elastoplastic behaviour in extension and buckles at zero load in contraction using
phase-plane analysis. They find three equilibrium positions using static methods, conditions for when the
system will collapse and will suffer a residual displacement after the shaking has stopped. They use the
NS El Centro record to illustrate their results. Two design criteria are proposed based on the conditions
required for no large residual displacements and for no collapse, in terms of displacement spectra and
input energy.

Bernal'* computes amplification factors for gravity effects using four strong-motion records (Olympia
S86W, El Centro SO0E, Taft S69E and Pacoima Dam S16E) in terms of a dimensionless stability coeffi-
cient and ductility factor for elastoplastic systems. A simple limit on the size of the stability coefficient,

0 = g/wil, is given based on earthquake codes. From this the conclusion is drawn that structures in

regions of relatively low seismic coefficients, i.e. low design acceleration, are less protected, by the in-

2They verify that there is little difference between predicted responses when this assumption is made and when it is not

made.



terstorey drift limitation, against inelastic gravity effects than those in areas of higher design acceleration.
Systems with six ductilitiesl( 2, 3, 4, 5 and6), nine stability coefficients)(to 0.2) and 37 periods((2

to 2s) were investigated for each of the records. No significant correlation was found between period
and amplification but an expression for predicting amplification due to gravity based on ductility and
stability coefficient is given. This expression was found to give different predictions than those given in
codes, some of which are shown to under predict amplification.

Fenwick et al*®> use a number of strong-motion records, although they base most of their results on
an artificial record of about5 s duration, to find amplification factors for elastoplastic and bilinear struc-
tures. They find that the strain hardening ratio (the ratio between the gradient of the first and second slope
of the bilinear force-deformation relation) is not significant for amplification but that viscous damping
does make a large difference. They use the Cholame Shandon Array 2W N65E record (from Parkfield
earthquake, 28/6/1966), which has a short duration of strong shaking, and compare the amplification
factors with those for the El Centro record and the artificial record and find they are much lower. Hence
duration has a large effect. They also find that for some records amplifications are not independent of
period over its entire period range. Equations are given for amplification factors in terms of ductility and
period for firm and flexible subsoils.

Consider the SDOF system illustrated in Figure 3(b). The derivation of the equation of motion for
this system follows that given in above but Equation 6 becomes (since vertical ground accel&ation,

acts like an additional gravity force):

Uy + 2owour + (Wi — (94 Vi) /Du = —Uy. (8)

Definingw; and¢; as before and letting = 1/(w3l — g) = 1/w?l yields equation 4 again but with
differentéy, w1 andg.

Jennings and Husid and Husid? as part of their studies also apply vertical ground motion as well
as gravity loads and horizontal motion and find that vertical ground motion is relatively unimportant in
controlling the time to collapse.

Consider the SDOF system illustrated in Figure 3(c). As for the bending case, see Figure 2(c), this
model assumes that the structure is finitely stiff vertically and that vertically the column responds like a
SDOF system governed by an equation of motion like Equation 1 although with not necessarily the same
damping and natural period as in the horizontal direction. This means that the system is separable into
the response vertically and the response horizontally which is affected by the vertical response but not
vice versa. The equation of motion of this system is Equation 5 again but with diffgrent ands.

Tani and Sod¥ present an investigation using a similar model to Equation 5 although using a bi-



linear force-displacement relationship, with positive stiffness ratio, similar to that used by Shih and
Lin1%. They assume the structure continues to behave elastically in the vertical direction even when
plastic deformation takes place in the horizontal direction. Horizontal ground motion is assumed to be
quasi-nonstationary white noise and vertical excitation is stationary white noise. Statistical mean square
response of the system is expressed by a Voltera type integral equation and solved using Laplace trans-
forms. An equivalent linearization method is used to model the bilinear hysteresis which they find to be
accurate. Numerical results are given for ten models with different stiffness ratiosights,H, yield
displacements and natural periods and for the three conditions: horizontal excitation only, horizontal and
gravity loads and horizontal and vertical excitation and gravity loads. All of their models have vertical
natural periods equal to a tenth of the the horizontal period, vertical damping edoéd emd horizontal
damping equal t@%. They conclude that gravity loads can be important, increasing the displacement
more than10%, for tall structures and especially those with small stiffness ratio. They find vertical
excitation can be ignored due to its small effect.

The study of Tani and Sodéis small scale, only a few models are considered which do not cover
different combinations of horizontal and vertical natural period and damping which could occur in struc-
tures. They also do not subject their models to particularly large excitations, the PGA of their most
intense white noise excitation@ians~2 and the power spectral density of the vertical excitation of all of

their simulations is a quarter of the horizontal density.

1.4 Conclusions

This section shows that although some work has been completed on how vertical ground motion affects
structural response, many of these studies are too small scale for their conclusions to be general. Hence
there is a need for a more general approach using a range of structural models, structural parameters and
ground motion inputs to derive some general conclusions on the importance of vertical ground motion to
design.

Many of the SDOF system studies do not base their results on actual strong-motion recordings but on
white noise representation of ground shaking. Although white noise representation may yield adequate
estimates of the importance of vertical excitation for most earthquake ground motions which occur,
Newmark and Rosenblueth p. 302 state ‘[a]dditional confirmation of the orders of magnitude of
Monte Carlo results should in general be obtained from spotchecks using records of actual earthquakes’.
When white noise was first used to simulate strong-motion records, in the 1960s, there were few records
of actual earthquakes especially those from the near field of large earthquakes. Now though, there are

thousands of strong-motion recordings are available of which a large fraction are from the near field of



reasonably large earthquakes, thus no longer do studies on the response of structures to simultaneous
horizontal and vertical excitation need to be solely based on white noise approximations.

Those studies which do use actual accelerograms often use only a handful and often they only use
the El Centro record, although many other records exist which are more reliable (due to better recording
and processing) and contain more intense motion. Thus a large suite of time-histories needs to be utilised
to give reliable conclusions which are based on ground motions which have actually occurred.

Newmark and Hal® note that ‘it is still difficult to construct mathematical models that lead to
satisfactory results and that are not complicated to the point of becoming impractical for analysis of
complex structures’. Shih and finoted, specifically for combined horizontal and vertical excitation,
that two inelastic SDOF systems can behave very differently under the same seismic action. Therefore
an understanding the response of simple models is needed before complex models can be studied. An

investigation of these simple models follows.

2 Data used

We selected 186 free-field, chiefly triaxial strong-motion records from 42 earthquakes using the criteria:
M, > 5.8, distance to surface projection of ruptute< 15km and focal deptth < 20km. Because

of space limitations those chosen records and other tabulated material are listed in Ambraseys and Dou-
glas'®. The majority {2%) came from western North America, the rest from Europe and from other parts

of the world. Their distribution with earthquake mechanism is: 9835% thrust, 72 0139% strike-slip

and 16 019% normal. For more details see Ambraseys and Dodglasd Ambraseys and Dougfs

3 Stability

3.1 Bending model

Consider the homogenous Equation 4, i/g.= 0, and leta = (1 — 3V};) be constant for a given period

of time. Then looking for solutions of Equation 4 of the form= KeP! leads to the equation:

p=wi(=& £4/& —a). (9)

Solutions of Equations 1, 3 & 7 corresponddo= 1, w; replaced bywy and¢; replaced by, and
for both solutiong has a negative real part therefore the amplitude of the motion decays with time. This
is not so in equation 9. §? —a > 0 and/&7 — a > & then one solution of equation 9 will be positive.

This means that one of the solutions of equation 4 has the formKeP+t wherep, > 0, a solution

10



which rapidly tends tao ast — oo. Therefore if3V;; > 1 for a reasonable length of time then the

displacements of the mass can become very large. This inequality is equivalent to:

1_
Vi, > g( 7);

v

ory > (20)

Vie/g+1

Once the column is displaced horizontally from the vertical gravity and positive vertical accelerations
mean it is easier for displacements of the mass horizontally to continue. As the displacement increases the
equivalent stiffness of the column decreases and so the mass continues to be deflected by more and more.
Only the application of a large negative vertical acceleration will counteract this process. Inequality 10
simply means that bending model cannot withstand forces (gravity plus vertical ground accelerations)
greater than its Euler buckling loa®,, if they are sustained for a significant length of time. Note that

this upper limit orry holds for all non-zero horizontal input motion.

3.1.1 Infinite vertical stiffness

All the records, with vertical components, in the dataset were used to study the onset of instability for
increasingy. The response spectrum, for2, 5, 10 and20% damping, of each horizontal component was
calculated fory betweerD and they which yieldsSA > 1000 ms~2 at one or more periods, increasing

in 0.01 unit intervals, ory > 0.96%. From each spectrum the largesk for any period,SA nax(7)

was found. Figure 5 show$A ,.x(7)/SAmax(y = 0), i.e. amplification in response due to vertical
excitation, against for one componert(for 5% damping). The dashed line marks the boundary between
values ofy where the system is stable andvhere Inequality 10 holdsy(= 0.58 for this record), i.e.

the system could be unstable if the amplitude of vertical acceleration was sustained.

Figure 5 shows that only for values 9fclose to the region of instability, around> 0.4, doesSA
significantly increase. It also shows titat of damped systems do not become unrealistically large, i.e.
high amplifications, unti is slightly larger, abouy > 0.65, than the smallest value where Inequality 10
holds. This is because the stability condition of the SDOF system is only violated for a short time and
large responses are not able to build up.

For each record it is found that the ratio of critical damping used does not strongly affect the value of
~ above which instability occurs. For example, for the Tabas N74E component instability occurs when

~ exceed9$).50, 0.62, 0.65, 0.68 and0.75 for 0, 2, 5, 10 and20% damping respectively (see Figure 5).

3For+y > 0.96 the time to calculate the response became extremely long even for records with small vertical accelerations.
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For each value ofy the minimum acceleration (limit acceleration) which satisfies Inequality 10
was calculated and the maximum length of time, in the records, for which accelerations higher than
this were sustained. Note this is not the total amount of time for which the recorded acceleration is
above a threshold but the maximum interval where accelerations are above a threshold. These inter-
vals are also a function of. To calculate this the records were linearly interpolated. Figure 6 shows
SAmax(7)/SAmax (v = 0) against these calculated intervals for one componeritfodamping.

Figure 6 shows that the SDOF system is still stable if the interval for which the ground acceleration
satisfies Inequality 10 is sufficiently small, less than alfod5 s, but for longer intervals the system’s
responses can become extremely large, i.e. it is unstable. All examined records show similar behaviour
although the length of the interval, during which the ground acceleration is above the limit acceleration,
required for instability to occur varies (Table 1). The interval lengths vary because the vertical ground ac-
celeration is a dynamic force and not static and also because of the effect of the combination of horizontal
and vertical excitation on the system.

As the load ratio;y, increases the period of the peak response decreases because vertical ground
motion is usually of a higher frequency than the corresponding horizontal ground motion. For load ratios
large enough to increase the response significantly (i.e. close to the unstable region or within the unstable
region) the horizontal period at which the largest response occurs is usually bétweewl0.2 s which
reflects the high frequency nature of vertical ground motion. Therefore Table 1 shows that instability
occurs if the length of the interval when Inequality 10 holds is greater than some fraction (usually about
an eighth to a quarter for realistic damping levels) of the horizontal period for which the instability
occurs (the most commonly interval given in Table 1 is estimated by a visual inspection of a graph such
as Figure 6 with all components plotted). Table 1 shows that damping does not have a strong influence
on the onset of instability due to too large a load ratio,

The analysis shows that the SDOF systems governed by Equation 4 or 5 become unstable, i.e. the re-
sponse of the system is unphysically large, for earthquake loading when the vertical ground acceleration
is above a limit, given by simple Inequality 10, for longer than betwgand0.13 s and that the ratio of
critical damping present in the SDOF system does not have a large influence on this.

The limit on the length of the interval that produces unrealistically large responses is related to
the natural horizontal period of the systeff},. For systems with extremely short natural horizontal
periods [}, < 0.1s) the critical length of interval approaches zero, i.e. if Inequality 10 holds for any
length of time during the earthquake then the system will become unstable. For systems with extremely
long natural horizontal periodd > 10s) then the critical interval tends to the longest interval within

the acceleration time-history between zero crossings. This is shown in Table 2 using the Tabas N74E

12



component. Due to the correction technique there is little energy in the period range of the fetmords
0.04 s and beyond s thus results for natural horizontal periods within these ranges may be unreliable.
Table 2 shows that limits on the critical interval mentioned above hold, i.e. for extremely short periods
the critical interval is also short and as period increases so does the critical interval reaching an upper
limit equal to the maximum time between zero crossings of acceleration (in thi® &asg.

This result shows that the breakdown of the SDOF systems governed by Equation 4 or 5 is more
likely to occur for short-period than long-period systems because the high vertical acceleration which
induces instability only needs to be sustained for an extremely short time. For long period systems
the high vertical acceleration needs to be sustained for a longer time but this cannot be longer than the
maximum time between zero crossings.

For each record in the near-field set the maximum load ratimhich can be used without Inequal-
ity 10 holding was calculated for both infinite and finite vertical stiffness (for natural vertical periods
between0.1 and2s and2, 5, 10 and20% damping). This was done without considering the time the
vertical input acceleration is above the critical level. Figure 7 shows the maximum load ratio against the
cumulative total of records for which instability may occur for infinite and finite vertical stiffness.

Figure 7 shows that for load ratios @f3 to 0.5 most vertical acceleration time-histories will not in-
duce instability for systems with infinite vertical stiffness. In fact for load ratios lessii3dnhe infinite-
vertical-stiffness SDOF system will definitely not become unstable for any vertical time-history in the
set of records which includes the most intense vertical accelerations yet recorded (Nahanni 1 (Nahanni
earthquake, 23/12/1985), vertidAlGA = 19.4ms~2 [2g]; El Centro 6 (Imperial Valley earthquake,
15/10/1979), verticaPGA = 15.5ms™ 2 [1.6¢g]; Victoria (Victoria earthquake, 9/6/1980), vertical
PGA = 14.7ms~ 2 [1.5 g] and Tarzana (Northridge earthquake, 17/1/1994), verR€aA = 10.3 ms 2
[1.0g])). Itis therefore unlikely that for realistic load ratios vertical acceleration will result in the failure

of such systems through instability.

3.1.2 Finite vertical stiffness

Figure 7 shows that for systems with finite vertical stiffness a number of vertical time-histories will
induce instability for load ratios d¥.3 to 0.5 even for large vertical damping. Figure 7 shows that the
maximum load ratio which can be used for an analysis of all the records in the near-field set using the
bending model and finite vertical stiffness is ab6dit for 2 and5% damping, for10% damping it is
about0.15 and for20% damping it is abou6.22. Thus for certain natural vertical periods and realistic
choices ofy (0.3 to 0.5) the bending SDOF system will yield unrealistically large responses (due to the

system breaking down) for some of the near-field records. This precludes a general analysis.
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3.2 Hinging model

In the same way that a rough upper limit can be found for the bending equation of motions, a lower limit
on! can be found for the hinging equation of motions. Following the same steps as above it can be shown

that a large response may occur if;

Vi
2
wi

or: Vi > Ilw?

[

orVy > lwi—g (11)

If this inequality holds then the response of the hinging structure can become IargeT‘p‘iﬁcgf
this means that for structures with long natural periblss to be large for the structure to remain stable.
Inequality 11 is the same constraint as that placed, dnring the derivation of the equation of motion
when vertical ground acceleration is neglected (see above), modified due to the presence of vertical
ground motion.

All the records, with vertical components, in the near-field data set were also used to study the
onset of instability for decreasirnig The response spectrum, far2, 5, 10 and20% damping, of each
horizontal component was calculated fobetween5 m (for [ this large, and for the period range of
interest, the vertical excitation has no effect) and ithehich yieldsSA > 1000 ms~2 at one or more
periods, decreasing by a factor @5 each loop. From each spectrum the largestfor any period,
SAmax (1) was found. Figure 8 showSA .« (1)/SAmax(l = 5m), i.e. amplification in response due
to vertical excitation, againgtfor one component. Inequality 11 involves frequency (and hence period)
thus the boundary between the stable and unstable regions depends on period. The large&tsperiod,
gives the smallest criticdl and this is used. In Figure 8 the dashed line marks the boundary between
values ofl where the system is stable ahdhere Inequality 11 holdd (= 0.74 m for this record and
natural period o s), i.e. the system could be unstable if the amplitude of the vertical acceleration was
sustained.

Figure 8 shows that Inequality 11 is extremely over conservative in its prediction of the stable region,
predicting that for < 0.74 m stability could be a problem whereas in fact the response only increases
for I < 0.07m and large responses indicative of instability only occurifer 0.05m. The reason for
the large difference is that vertical peak ground acceleration is usually associated with high frequency
waves which do not affect long period systems which are the ones for which instability is predicted using
Inequality 11. Unless a vertical strong motion record contains large amplitude long period accelerations

then instability is not a problem for realistic choiceslafor does any amplification due to the vertical
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acceleration occur for realistiovalues.

For each record it was found that the ratio of critical damping used did not strongly affect the value
of [ below which instability occurs. For example, for the Tabas N74E component the valumeewiv
which instability occurs i8.07, 0.06, 0.05, 0.05 and0.04 m for 0, 2, 5, 10 and20% damping respectively
((see Figure 8).

For each value of the minimum acceleration (limit acceleration) which satisfies Inequality 11 was
calculated and the maximum time the records show sustained accelerations higher than this. Note this
is not the total amount of time in the records which the acceleration was above a threshold but the
maximum interval where accelerations above a threshold were recorded. Also note that these intervals
are a function of and natural period. To calculate this the records were linearly interpolated. Figure 9
showsSA .x (1) /SAmax (I = 5m) against these calculated intervals for one componestfodamping.

Figure 9 shows that the SDOF system is still stable if the interval for which the ground acceleration
satisfies Inequality 11 is sufficiently small, less than alib2it, but for intervals longer than a certain
length of time the system’s responses are extremely large, i.e. it is unstable. All examined records show
similar behaviour although there is a range of intervals, during which the ground acceleration is above
the limit, required for instability (Table 3). The variation occurs because the vertical ground acceleration
is a dynamic force and not static and also because of the effect of the combination of horizontal and
vertical excitation on the system. The situation is further complicated because Inequality 11 is a function
not only of/ but also the natural period of the system.

This analysis shows that the SDOF systems governed by Equation 4 or 5 become unstable, i.e. the
response of the system is unphysically large, for earthquake loading when the vertical ground accelera-
tion is above a limit acceleration, given by simple Inequality 11, for longer than &b@ito 1.3 s. Note
that the lengths of the columi, for which instability can be a problend & 0.07 m for Tabas N74E
component, see Figure 8) are much less than occur in practice especially in long period systems where
Inequality 11 may be violated. Also the length of the intervals for which vertical accelerations satisfying
Inequality 11 are much longer than those for the bending model. Both these findings mean that large
amplification of horizontal response from vertical accelerations is extremely unlikely to occur in practice
for structures that can be modelled by the elastic hinging SDOF model.

For each record in the near-field set the minimum length of columwhich can be used before
Inequality 11 holds is calculated for both infinite and finite vertical stiffness (for natural vertical periods
betweer).1 and2s and2, 5, 10 and20% damping). This was done without considering how long the
vertical input acceleration is above the critical level. The calculation for infinite vertical stiffness assumes

that the wave associated with vertical PGA is of sufficient period to cause instability in a system with
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natural horizontal period &fs. For finite vertical stiffness the vertical spectral acceleration at each period
was used to calculate the minimum length of column and then the minimum length from all periods was
chosen. Figure 10 shows the minimum length of column against the cumulative total of records for which
instability may occur for infinite and finite vertical stiffness.

Figure 10 shows that for columns longer tham no vertical acceleration time-histories will induce
instability for systems with infinite vertical stiffness or finite vertical stiffness. In fact since vertical
PGAs are associated with high frequencies the situation for infinite vertical stiffness is much different
than Figure 10 suggests. This is because instabilities only occurs if accelerations over the critical level
of vertical acceleration are sustained for more than abdu, as shown above, which will not be so for
the wave associated with vertical PGA. Thus this limit on the minimum length of column which can be
used is probably much less tham for both finite and infinite vertical stiffness. The records used for
this analysis includes the most intense vertical ground motions yet recorded so this means it is extremely
unlikely that hinging systems with a realistic length of column will fail through instability for any vertical

acceleration.

4 Parametric resonance

For certain combinations of vertical driving frequen€,, and the naturahorizontal frequencyws,
systems governed by Equations 4 & 5 become dynamically unstablaaimbntal vibrations occur;
the amplitude of these vibrations rapidly become large. The frequencies at which a system approaches
such a resonance (so called parametric resonance) differs from that for ordinary forced vibrations. For
sufficiently small values of the longitudinal force this relationshifjs = 2w %L,

The region of instability can be determined by finding the conditions under which Equations 4 & 5
have periodic solutions with perid@". Bolotin?! shows that the equations defining the boundary of the

unstable region are:

Qy = 2w, 1—2521\/454—4§2+ <A\2/ﬁ>2 (12)
ForQy = 2w this simplifies toAy 5 = 4¢, which is about the largesty, 3 can be before parametric
resonance occurs. Figure 11 shows the regions of instability predicted by Equation 12 for different
damping levels§ againstAy 5.
Although parametric resonance is important for periodic horizontal and vertical excitations of long
durations whether it can occur for non-periodic earthquake strong motions of relatively short duration

(usually less than abo@0 s of strong shaking) needs to be investigated. This is the subject of this section.
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4.1 Bending model
4.1.1 Finite vertical stiffness

Clough and Penziéh pp. 522-525 show, from the power spectral density function, that SDOF systems
with reasonably low ratios of critical damping & 0.1) can be classified as narrow-band systems. This
means that the response of such systems to excitation will locally appear as a slightly distorted sine
function with a frequency near the natural frequency of the system with amplitudes that vary slowly in a
random fashion. Therefore the responsgg, of a vertical SDOF system to a strong-motion record can be
approximated by:;, = A, cos(wyt), WwhereA, is the amplitude and, is the natural angular frequency

of the system. Hence Equation 5 becomes:

ug + 286 wiug + wi[l — BA, cos(wyt)|u = —Uy.

Therefore parametric resonance is possibjeAf, > g., wheres. = Ay 3 for the critical value of

Ay for w, from Equation 12. Hence if:

Ay > B/, (13)

then parametric resonance (leading to large amplification of the horizontal response) can occur if such
vertical accelerations are sustained for a long enough time. An upper bouAd snthe maximum
spectral acceleration at the period and damping of interest for the vertical strong-motion record; this can
be found from acceleration response spectra.

The Tabas N74E and vertical components are used as an example of the importance of parametric
resonance witl§ = 0.05 (5% critical damping in both horizontal and vertical directions) ganet 0.25.

For ¢ = 0.05 have. = 0.2 (using Figure 11) and fofy = 0.25 have3 = 0.034 and therefore for
A, >0.2/0.034 = 5.9 ms~2 parametric resonance is possible.

For each of the 46 periods between and2s and for5% damping the response of the normal
SDOF model to the vertical ground motion was calculated and stored. Figure 14 shows the acceleration
response spectrum for the vertical component &fiddamping. Also marked is the period range for
which parametric resonance is possible using Inequality 13. This shows that parametric resonance is
possible but only for vertical periods shorter that s.

The calculated vertical responses are used as the input to calculate the response specifdm, for
damping, of the N74E component using the bending modej fer 0.25, i.e. solving Equation 5 with
ug; equal to the vertical response accelerations -ang; equal to the horizontal ground acceleration.

Figure 15 shows the percentage increase in spectral acceleration due to the vertical ground motion for
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the response spectrum of the N74E component and the normal SDOF model. As can be seen parametric
resonance does occur for this record and it leads to an large increase7(o%€x in the horizontal
spectral acceleration for horizontal and vertical natural periagttsand0.18 s respectively.

To assess the importance of parametric resonance generally the same system was subjected to another
strong-motion record. To make the comparison valid a search was made of the near-field records to find a
vertical time-history with an acceleration spectrumig¢ damping close to that of the vertical spectrum
of the Tabas record (Figure 14). This means that differences in the effect of the vertical excitation are
not due simply to the amplitude of the vertical excitation. The vertical time-history which is the closest
match, in terms of the acceleration spectrumbfardamping, is that from 17645 Saticoy Street from the
Northridge earthquake (17/1/199¥/, = 6.8). Figure 16 shows the acceleration spectrum which can be
compared with that of the Tabas record (Figure 14).

The samey (0.25) was used as for the Tabas record and the horizontal response spectrum for each
vertical period betweef.1 and2s was computed. Figure 17 shows the percentage increase in spectral
acceleration due to the vertical ground motion calculated for the response spectrum&ifticempo-
nent of the 17645 Saticoy Street record and the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase (over
300%) in the horizontal spectral acceleration for horizontal and vertical natural perigd®nd0.15 s
respectively. Comparing Figures 15 and 17 shows that although parametric resonance does occur for
the 17645 Saticoy Street record, as predicted, it does not greatly increase the response as it does for the
Tabas record. This is probably due to the shorter duration of large amplitude motion in the 17645 Saticoy
Street record compared with the Tabas record. This difference in duration is shown in Figure 18 where
the vertical acceleration time-histories of these two records are compared.

The strong ground motion in the Tabas record lasts longer than that in the 17645 Saticoy Street
record because the Tabas earthquallg & 7.3) is larger than the Northridge earthquakd (= 6.8).
Therefore because the large amplitude vertical responses required for parametric resonance do not occur
for as long in the 17645 Saticoy Street record there is less chance of such resonance causing large
increases in the horizontal response compared with the Tabas record. Therefore whether parametric
resonance causes large increases in the horizontal response for a particular record is not simply due to
the amplitude of the vertical excitation acceleration being large enough so that Inequality 13 holds but
also that these large excitations last for a sufficiently long time.

Figures 15 & 17 also show that when parametric resonance does not occur the amplifications due to
vertical ground motion are small (less than abbwbr 20%). Hence if parametric resonance does not

occur then vertical ground motion does not have a large effect on horizontal response.
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Figure 19 shows the regions in which parametric resonance can occur in terms of vertical input
acceleration, horizontal damping, and load ratio;y, using Inequality 13 for the bending model. For
example, this graph shows that for a constant harmonic input vertical acceleration with arnriplitsroe
parametric resonance will occur for a horizontal natural period equal to twice the period of the vertical
acceleration if the horizontal damping is equalsté and the load ratio is greater than abOowi. If
the horizontal damping is increased1o’ then the load ratio needs to be increased to abalit for
parametric resonance to occur.

As noted above instability occurs for some of the near-field recordsg fe10.1. This is much lower
than load ratios in most structures. Therefore no equations for the prediction of spectral acceleration
given magnitude, distance and site category using the bending model and finite vertical stiffness were

derived using the near-field dataset.

4.1.2 Infinite vertical stiffness

Equation 13 can be used to get a lower limit on the amplitude of the vertical ground acceleration required
for parametric resonance. However because ground motions are non-harmonic this is a poor estimator of
whether parametric resonance will occur.

Figure 12 shows that parametric resonance can occur for infinite vertical stiffness and bending mod-
els. Figure 12(a) clearly shows three peaks of large amplifications (up to @) due to the vertical
ground acceleration. These peaks occur at natural horizontal pefidds0.36 and0.42 s, which are
double the periods at which the largest vertical accelerations occur (see Figure 14) showing that these
amplifications are due to parametric resonance. These large amplifications though are not present if the
damping is increased @4 (see Figure 12(b)) even though Figure 19 shows that parametric resonance
is still possible (the graph should be considered for a vertical input acceleration equal to vertical PGA
which is7.3 ms? for this record).

Equations for the prediction of spectral acceleration given magnitude, distance and site category us-
ing the standard and bending models were derived using the near-field dataset, for details see Ambraseys
and Douglas®,%°.

The inclusion of the vertical ground motion has little effect. Figure 13 shows the ratio between
the spectral acceleration including the effect of the vertical accelerations and not including the vertical
accelerations (note that this ratio is between models not including soil terms). For a site on the surface
projection of the rupture plane (i.€.= 0km) of an earthquake witti/; = 7.8 the increase due to the
vertical accelerations is abo&¥ and for smaller magnitudes and larger distances it is less. Therefore

the effect of vertical excitation on this type of SDOF system can be neglected when it stays stable.
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4.2 Hinging model

The situation for the hinging model is more complicated becauselependent on the natural horizontal

period of the system and also the length of the column.

4.2.1 Finite vertical stiffness

Figure 23 shows the acceleration response spectrum for the vertical component of the Tabas record
for 5% damping. Also marked is the period range for which parametric resonance is possible using
Inequality 13 with/ = 0.5 m and horizontal damping &%. This shows that for vertical periods longer
than0.65 s parametric resonance is possible but that for shorter period9tb@asit is impossible.

The calculated vertical responses are used as the input to calculate the response specf@m, for
damping, of the N74E component using the hinging model fer(0.5 m, i.e. solving Equation 5 with
uy, equal to the vertical response accelerations-abig equal to the horizontal ground acceleration. Fig-
ure 24 shows the percentage increase in spectral acceleration due to the vertical ground motion calculated
using the response spectrum of the N74E component using the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase
(almost400%) in the horizontal spectral acceleration for horizontal and vertical natural perigdsd
0.95 s respectively. Also for short vertical periods (ab6ui s), corresponding to the peak in the vertical
response spectrum there is also a large increase in horizontal response for long horizontal periods which
is not caused by parametric resonance.

To assess the importance of parametric resonance generally the same system was subjected to an-
other strong-motion record. Figure 25 shows the acceleration spectrum of the 17645 Saticoy Street
record and the curve showing the period ranges where parametric resonance is possibié@oim,
vertical damping % and horizontal damping%, which can be compared with that of the Tabas record
(Figure 23).

The samé (0.5 m) was used as for the Tabas record and the horizontal response spectrum for each
vertical period betweef.1 and2s was computed fo2% damping. Figure 26 shows the percentage
increase in spectral acceleration due to the vertical ground motion calculated using the response spectrum
of the 180° component of the 17645 Saticoy Street record using the normal SDOF model.

As can be seen parametric resonance does occur for this record and it leads to an large increase
(almost300%) in the horizontal spectral acceleration for horizontal and vertical natural pericéland
0.85 s respectively. Comparing Figures 24 and 26 shows that although parametric resonance does occur
for the 17645 Saticoy Street record, as is predicted, it does not greatly increase the response as does

the Tabas record. This is probably due to the smaller duration of large amplitude motion in the 17645
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Saticoy Street record compared with the Tabas record. The 17645 Saticoy Street record increases the
horizontal response for short vertical periods and long horizontal periods (Figure 26) in the same way as
the Tabas record (Figure 24). Note however that this choice of length of columf.5 m, is unrealistic

for normal structures.

Figure 27 shows the regions in which parametric resonance can occur in terms of vertical input ac-
celeration, horizontal damping, natural horizontal period and length of colunminusing Inequality 13
for the hinging model. For example, this graph shows that for a constant harmonic input vertical accel-
eration with amplitudeés ms—2 parametric resonance will occur for a horizontal natural period equal to
twice the period of the vertical acceleration if the horizontal damping is equgkhtdhe length of the
column is equal td m and the natural horizontal period is greater than abds. If the length of the
column is increased tom then the horizontal damping needs to be decreased to a¥idiar parametric
resonance to occur.

Most vertical strong-motion records, even in the near field, do not contain enough energy in the long
period range for parametric resonance (defined by the regions of Figure 27) to occur. Figure 27 shows
that parametric resonance is most likely for long vertical perid@ds-(1s), very few structures though
have such a vertical period and hence it is unlikely that parametric resonance will lead to large increases
in the horizontal response of structures that can be modelled by SDOF systems with hinging.

Equations for the prediction of spectral acceleration given magnitude, distance and site category have
been derived for the hinging model with finite vertical stiffness,5fdrhorizontal and vertical damping,

I = 2m and 46 horizontal and vertical periods betwdeh and2s, for details see Ambraseys and
Douglas®. Figure 28 shows a contour plot of the ratio between the predicted spectral acceleration when
vertical ground motion is included (finite vertical stiffness hinging model fer2 m) and the predicted
spectral acceleration when it is ignored foB at distanced km. The maximum increase due to the
vertical excitation is about5% which occurs for a horizontal natural period of ab@utand a vertical
natural period of about s (Figure 28) and so is probably due to parametric resonance which occurs for
vertical periods which are half the horizontal period. The effect of vertical excitation on this type of

SDOF system can be neglected even when the vertical stiffness is finite.

4.2.2 Infinite vertical stiffness

Hjelmstad and Williamsof? state for the hinging model ‘[i]t is evident from the preceding discussion
[about parametric resonance leading to unbounded responses] that parametric resonance associated with
vertical motions, could be a concern in earthquake response of structures if the input motion exhibits near

periodicity, as was true in the 1985 earthquake, experienced in the the Mexico City lake bed region. One
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should note that the values gflhere called3] in building structures are typically rather small, thereby
limiting the troublesome range of frequencies associated with parametric resonance.

This idea was tested using a record of the Mictima¢19/9/1985) from Mexico City (CDAF de
Abastos Oficia) which is on very soft soiV{3y = 61 ms~!) and exhibits sinusoidal (see Figure 20)
ground motion with period abo to 3s. Figure 21 shows the percentage increase in the horizontal
spectral acceleration due to the vertical ground motion for this record lwith0.25m, 5% vertical
damping and)% horizontal damping. From Figure 21 it can be seen that there is an increase in the
horizontal response due to parametric resonance at periods greater thaf sabidatvever, the length
of column required to cause this increase is not realistic.

Equations for the prediction of spectral acceleration given magnitude, distance and site category us-
ing the standard and hinging models were derived using the near-field dataset, for details see Ambraseys
and Dougla$®,%°.

The inclusion of the vertical ground motion has little effect. Figure 22 shows the ratio between
the spectral acceleration with and without the effect of the vertical accelerations (note that this ratio
is between models not including soil terms). For a 8iten from an earthquake witd/, = 7.8 the
increase due to the vertical accelerations is abéuand for smaller magnitudes and larger distances it
is less. Therefore the effect of vertical excitation on this type of SDOF system can be neglected when it

stays stable.

5 Conclusions

The two elastic SDOF models studied for this article, the bending and the hinging models, both have
three main types of behaviour: normal, parametric resonance and instability. The type of behaviour the
system exhibits is controlled by the combination of system parameters and the vertical input acceleration.

The systems are unstable when the multiplier of horizontal displacement in the equation of the motion
is negative for a sufficiently long period of time so that exponential solutions of the equation are possible
and the systems collapse because the displacement (and velocity and accelerations) tend to infinity. This
limit is simply the stability criterion that the system must obey in the static case modified due to vertical
ground motion.

The length of interval above the critical acceleration required to induce instability is related to the
horizontal natural period of the system: short period systems require shorter intervals than long period
systems. The length of interval of above critical accelerations required for instability in bending systems
with periods between.1 and2s is about0.05s. The length of interval of above critical accelerations

required for instability in hinging systems with periods betwéenand2s is greater than that for the
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bending model and is equal to abau? s. Size of horizontal damping of either system has little effect
on the length of time that is required to cause instability.

A number of vertical records do induce instability in SDOF models with bending and finite vertical
stiffness for load ratios of abo0t3 to 0.5. Therefore such a failure mechanism is possible for structures
that can be modelled by such SDOF models.

No recorded vertical ground motions induce instability in SDOF systems with hinging for realistic
length of columns (greater thann) and horizontal and vertical damping and period. Therefore such a
failure mechanism is not possible for structures that can be modelled by such SDOF models.

The systems exhibit parametric resonance when the amplitude of the vertical acceleration is greater
than a limit acceleration and the period of this vertical acceleration is half the natural horizontal period.
This limit acceleration depends on the structural parameters: horizontal damping and length of column
(for the hinging model) or load ratio (for the bending model). Parametric resonance can lead to large
increases (up té00%) in the horizontal response of bending systems with realistic structural parameters.
Although parametric resonance can lead to large increases @(@%6) in the horizontal response of
hinging systems these increases are for unrealistic structural parameters, i.e. extremely short columns
with large horizontal and vertical periods so parametric resonance is not likely to occur in structures
that approximate to hinging models. The duration of the strong motion affects the size of the increase
in horizontal response due to parametric resonance so longer durations of strong motion lead to large
increases in response because parametric resonance can build up. For infinite vertical stiffness parametric
resonance can occur but this is only for structural parameters which are unlikely to occur in practice.

When the combination of system parameters and vertical input accelerations means that instability
and parametric resonance do not occur then the system behaves almost the same as the ordinary zero-
gravity system defined by Equation 1. The amplifications due to the vertical excitation are small. For
most vertical ground motions and realistic choices of system parameters this is the type of behaviour

which will occur.
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Damping

ratio (%)

Min. and max.
interval lengths §)

Most common
interval lengths §)

0
2
5
10
20

0 and0.05

0 and0.06
0.005 and0.08
0.01 and0.08
0.01 and0.13

01t00.03
01t00.04
0.02 t0 0.06
0.021t00.07
0.04t00.09

Table 1: Minimum, maximum and the most common length of intervals, for which the vertical accelera-
tion is above the limit that causes instability in bending model.

T Length of Ty Length of
(s) interval (s) (s) interval (s)
0.01 0.01 1.0 0.11
0.02 0.02 2.0 0.22
0.05 0.025 5.0 0.48
0.1 0.03 10.0 0.50
0.2 0.05 20.0 0.50
0.5 0.07 50.0 0.50

Table 2: Horizontal natural period of system against length of interval over the critical acceleration
defined by Inequality 10 required to cause instability for the Tabas N74E componefitiastaimping.

Most common
interval lengths §)

Damping | Min. and max.
ratio (%) | interval lengths §)
0 0.05t00.9

2 0.06t0 1.0

5 0.1 and1.2

10 0.1 and1.2

20 0.1 and1.3

0.1t00.2
0.1t00.25
0.15t00.25
0.15t00.3
0.15t00.3

Table 3: Minimum, maximum and the most common length of intervals, for which the vertical accelera-
tion is above limit which causes instability in hinging model.
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Figure captions

[

10.

11.

12.

13.

14.

. Structural model for zero gravity field where vertical acceleration is neglected.

. Bending structural model:

(a) for non-zero gravity field where vertical ground motion is neglected.

(b) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
infinite.

(c) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
finite.

. Hinging structural model:

(a) for non-zero gravity field where vertical ground motion is neglected.

(b) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
infinite.

(c) for non-zero gravity field where vertical ground motion is considered and vertical stiffness is
finite.

. Factor,l /\/1 + T}g/[(2m)2l], againstly for length of pendulum, = 5, 10, 15, 20 and25 m.

. Amplification in maximum spectral acceleration due to vertical excitation agaifigt Tabas

N74E component (from Tabas earthquake, 16/9/1978) (bending model).

. Amplification in maximum spectral acceleration due to vertical excitation against maximum inter-

val above limit acceleration for Tabas N74E component (bending model).

. Maximum load ratio against cumulative number of records for which Inequality 10 holds for nat-

ural vertical periods betwednl and2s.

. Amplification in maximum spectral acceleration due to vertical excitation agdmstabas N74E

component (hinging model).

. Amplification in maximum spectral acceleration due to vertical excitation against maximum inter-

val above limit acceleration for Tabas N74E component (hinging model).

Minimum length of column against cumulative total number of records for which Inequality 11
holds for natural vertical periods betwe@n and2s.

Graph showing regions of instability where parametric resonance occurs. Parametric resonance
occurs within the region to the right of each line.

Percentage increase in spectral acceleration due to the vertical ground motion for infinite vertical
stiffness for the N74E component of the Tabas strong-motion record.

(a) Undamped
(b) 2% damping

Ratio between the predicted spectral acceleration for the bending moeel((3) and for the
standard model.

Absolute acceleration response spectrum of the vertical component of the Tabas reé6td for
damping. Dashed line indicates lowest amplitude of vertical acceleration required for parametric
resonance fofy = 0.25.
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15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

Percentage increase in spectral acceleration due to the vertical ground motion for finite vertical
stiffness 5% damping andy = 0.25 for the N74E component of the Tabas strong-motion record.

Like Figure 14 but for the vertical component of the 17645 Saticoy Street record from the Northridge
(17/1/1994) earthquake.

Like Figure 15 but for th@80° component of the 17645 Saticoy Street strong-motion record.
Vertical acceleration time-histories.

(a) 17645 Saticoy Streedf,, = 6.7, M; = 6.8)
(b) Tabas {1, = 7.4, M; = 7.3)

Parametric resonance can occur for combinatiorgsasfd~y which are above line corresponding
to the vertical input acceleration.

Vertical acceleration time-history from Mexico City (CDAF de Abastos Oficia) of the Midac
earthquake (19/9/1985).

Percentage increase in spectral acceleration due to the vertical ground motion for infinite vertical
stiffness,5% vertical damping0% horizontal damping antl= 0.25 m for the NOOO component
of the Mexico City (CDAF de Abastos Oficia) strong-motion record.

Ratio between the predicted spectral acceleration for hinging medeln) and for the standard
model.

Absolute acceleration response spectrum of the vertical component of the Tabas re&6fd for
damping. Dashed line marks the lowest amplitude of vertical acceleration required for parametric
resonance fo2% horizontal damping and= 0.5 m.

Percentage increase in spectral acceleration due to the vertical ground motion for finite vertical
stiffness,5% damping vertically an@% damping horizontally andl = 0.5 m for the N74E com-
ponent of the Tabas strong-motion record.

Like Figure 23 but for the vertical component of the 17645 Saticoy Street record.
Like Figure 24 but for th&80° component of the 17645 Saticoy Street strong-motion record.

Parametric resonance can occur for combinatiogsBfand! which are above line corresponding
to the vertical input acceleration.

@ l=1m
(b) I =5m

Ratio between the predicted spectral acceleration for hinging mbeel2(m) and the standard
model M, = 7.8, d = 0 km).
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