Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Realising transition pathways for a more electric, low carbon energy system in the UK : challenges, insights and opportunities

Chilvers, Jason and Foxon, Timothy J and Galloway, Stuart and Hammond, Geoffrey P. and Infield, David and Leach, Matthew and Pearson, Peter JG and Strachan, Neil and Strbac, Goran and Thomson, Murray (2017) Realising transition pathways for a more electric, low carbon energy system in the UK : challenges, insights and opportunities. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. ISSN 0957-6509

[img]
Preview
Text (Chilvers-etal-PIMEA-2017-Realising-transition-pathways-for-a-more-electric-low-carbon-energy-system)
Chilvers_etal_PIMEA_2017_Realising_transition_pathways_for_a_more_electric_low_carbon_energy_system.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

The United Kingdom (UK) has placed itself on a transition towards a low carbon economy and society, through the imposition of a legally-binding goal aimed at reducing its ‘greenhouse gas’ (GHG) emissions by 80% by 2050 against a 1990 baseline. A set of three low-carbon, sociotechnical transition pathways were developed and analysed via an innovative collaboration between engineers, social scientists and policy analysts. The pathways focus on the power sector, including the potential for increasing use of low-carbon electricity for heating and transport, within the context of critical European Union developments and policies. Their development started from narrative storylines regarding different governance framings, drawing on interviews and workshops with stakeholders and analysis of historical analogies. The quantified UK pathways were named Market Rules (MR), Central Co-ordination (CC) and Thousand Flowers (TF); each reflecting a dominant logic of governance arrangements. The aim of the present contribution was to use these pathways to explore what is needed to realise a transition that successfully addresses the so-called energy policy 'trilemma', i.e., the simultaneous delivery of low carbon, secure and affordable energy services. Analytical tools were developed and applied to assess the technical feasibility, social acceptability, and environmental and economic impacts of the pathways. Technological and behavioural developments were examined, alongside appropriate governance structures and regulations for these low-carbon transition pathways, as well as the roles of key energy system 'actors' (both large and small). An assessment of the part that could possibly be played by future demand side response (DSR) was also undertaken in order to understand the factors that drive energy demand and energy-using behaviour, and reflecting growing interest in DSR for balancing a system with high proportions of renewable generation. A set of interacting and complementary engineering and techno-economic models or tools were then employed to analyse electricity network infrastructure investment and operational decisions to assist market design and option evaluation. This provided a basis for integrating the analysis within a whole systems framework of electricity system development, together with the evaluation of future economic benefits, costs and uncertainties. Finally, the energy and environmental performance of the different energy mixes were appraised on a ‘life-cycle’ basis to determine the GHG emissions and other ecological or health burdens associated with each of the three transition pathways. Here the challenges and opportunities that have been identified over the transition towards a low-carbon future in the UK are described with the purpose of providing a valuable evidence base for developers, policy makers, and other stakeholders.