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ABSTRACT: Understanding interactions between radionuclides and mineral
phases underpins site environmental cleanup and waste management in the
nuclear industry. The transport and fate of radionuclides in many subsurface
environments are controlled by adsorption, redox, and mineral incorporation
processes. Interactions of iron (oxyhydr)oxides with uranium have been
extensively studied because of the abundance of uranium as an environmental
contaminant and the ubiquity of iron (oxyhydr)oxides in engineered and
natural environments. Despite this, detailed mechanistic information regarding
the incorporation of uranium into Fe(II)-bearing magnetite and green rust is
sparse. Here, we present a co-precipitation study in which U(VI) was reacted
with environmentally relevant iron(II/III) (oxyhydr)oxide mineral phases. On
the basis of diffraction, microscopic, dissolution, and spectroscopic evidence,
we show the reduction of U(VI) to U(V) and stabilization of the U(V) by
incorporation within the near surface and bulk of the particles during co-precipitation with iron (oxyhydr)oxides. U(V) was
stable in both magnetite and green rust structures and incorporated via substitution for octahedrally coordinated Fe in a uranate-
like coordination environment. As the Fe(II)/Fe(III) ratio increased, a proportion of U(IV) was also precipitated as surface-
associated UO2. These novel observations have significant implications for the behavior of uranium within engineered and natural
environments.

■ INTRODUCTION

Uranium is a problematic contaminant at nuclear sites and is
the dominant radionuclide by mass in radioactive wastes
destined for geological disposal. Groundwater conditions under
both scenarios range from mildly acidic to alkaline and from
oxic to anoxic.1−4 The oxidation state of uranium significantly
controls its mobility. Under oxic conditions, soluble and
environmentally mobile U(VI) dominates; under anaerobic
conditions, uranium is typically reduced to poorly soluble
U(IV). During biological and abiotic reduction of U(VI), U(V)
reportedly forms as a transient species.5−7 Recent work has also
suggested that U(V) can be stabilized at mineral surfaces8−12

and via incorporation into environmentally relevant iron
(oxyhydr)oxide phases such as goethite (α-FeOOH) and
magnetite (FeIIFeIII2O4).

13−21 Indeed, establishing the extent of
U(V) stability upon interaction with Fe (oxyhydr)oxides is
essential in underpinning predictive models for U behavior in
environmental systems that currently do not recognize the
presence of U(V). To achieve this, U speciation needs to be

determined at a molecular scale, which is a key step in defining
the significance of U(V) in environmental systems and in
developing realistic models for predicting the environmental
fate of uranium.
Fe(II)/Fe(III)-bearing (oxyhydr)oxide minerals such as

m a g n e t i t e a n d g r e e n r u s t 2 2 ( e . g . ,
[FeII3Fe

III(OH)8]
+[Cl,nH2O]−) are ubiquitous in anoxic

subsurface environments (e.g., soils and sediments), forming
via a variety of biogeochemical processes23,24 and during the
anaerobic corrosion of steel, a significant component in
contaminated, engineered environments and geological disposal
facilities.25−27 Recent studies have suggested possible pathways
for how U(VI) reduction occurs at the magnetite sur-
face.8,10,11,28 Some studies suggest U(VI) is reduced to directly
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form U(IV),29 whereas other studies show U(VI) is reduced to
U(V) via a one-electron transfer process and then U(V)
disproportionates to form U(IV).28,30 Previous spectroscopic
studies have suggested that U(V) can be stabilized via its
incorporation into magnetite within the octahedral sites in a
distorted uranate-like coordination, although the exact
structural site has not been conclusively determined, and no
information about U(V) stabilization in other Fe(II)/Fe(III)
(oxyhydr)oxides (e.g., green rust) is currently available.8,16,19

Theoretical simulations of incorporation of U into iron
(oxyhydr)oxide minerals have provided information about the
U(VI) and U(V) coordination environment when substituted
for octahedrally coordinated Fe within the magnetite
structure.21,31 Recently, advances in spectroscopic techniques
have also demonstrated that U(IV), U(V), and U(VI) can be
distinguished using high-energy resolution fluorescence-
detected-X-ray absorption near edge structure (HERFD-
XANES) techniques.19 Ultimately, if U(V) is incorporated
into the structure of Fe(II)/Fe(III) (oxyhydr)oxides after
U(VI) reduction, this could prevent disproportionation and
lead to long-term immobilization of U(V). However, the
pathway and mechanism of U(V) incorporation into magnetite
and green rust are either poorly defined or yet to be
determined.
Here, we synthesized both magnetite and green rust with

U(VI) via a co-precipitation process. We then gained detailed
molecular scale insights into the speciation and atomic scale
mechanisms of incorporation of U within the mineral structures
using state-of-the-art HERFD-XANES spectroscopy in combi-
nation with extended X-ray absorption fine structure (EXAFS)
spectroscopy. Synchrotron analysis unequivocally confirmed
the reduction of U(VI) to stabilized, octahedrally coordinated
U(V), which is incorporated within both magnetite and green
rust. This facile stabilization of U(V) within these bulk mineral
phases may have important implications for the fate of U in
engineered and natural environments where U(V) has typically
been considered transient.

■ METHODS

Mineral Synthesis and Characterization. Uranium-
bearing magnetite and green rust were synthesized using a
direct co-precipitation method in experiments performed at
room temperature in an anaerobic chamber.32 In brief,
solutions of 0.1 M FeCl2, 0.2 M FeCl3, 0.3 M HCl, and
0.0126 M U(VI)Cl6 were mixed for 24 h before mineral
precipitation was induced by introduction of the Fe(II)/Fe(III)
solution into a N2-sparged 28−30% (w/v) NH4OH solution
(pH 11) that was being continuously stirred over 15 min to a
final pH of 9. This led to the instantaneous co-precipitation of
the uranium-doped minerals. Four different starting Fe(II)/
Fe(III) ratios were used to form magnetite and green rust:

= =x
Fe(II)
Fe(III)

0.5, 0.6, 0.8, or 2.0

After reaction, the solid samples were analyzed by powder X-
ray diffraction (XRD) and transmission electron microscopy
(TEM) to characterize their structure, particle size, and
morphology. The distribution of uranium within the iron
(oxyhydr)oxides particles was determined using acid dissolu-
tion performed as a function of [H+] in solution.33

X-ray Absorption Spectroscopy (XAS). Uranium L3 edge
XAS spectra were recorded on wet mineral pastes at Diamond

Light Source, beamline B18,34 in a liquid N2 cryostat in
fluorescent mode using a Ge detector.35 Analysis of the EXAFS
spectra was performed in Artemis and Athena with details given
in the Supporting Information.36−40 U M4 edge HERFD-
XANES spectra were recorded at European Synchrotron
Radiation Facility, beamline ID26,41 through the use of an X-
ray emission spectrometer42,43 and analyzed using iterative
transformation factor analysis12,44 to determine the proportion
of U(IV), U(V), and U(VI) in the samples.

■ RESULTS AND DISCUSSION
Co-precipitation experiments were performed to determine the
speciation of uranium following co-precipitation with either
magnetite or green rust. The Fe(II)/Fe(III) (oxyhydr)oxides
were co-precipitated with U(VI) at starting Fe(II)/Fe(III)
ratios of 0.5/0.6 to synthesize magnetite and 0.8/2.0 to
synthesize green rust (Figure S1). Additionally, transmission
electron microscopy showed the magnetite was nanoparticulate,
with particle sizes ranging from 1 to 20 nm (Figure S2). Green
rust was present as pseudohexagonal plates of approximately
50−600 nm, and energy dispersive X-ray analysis showed
chloride was present, indicating green rust chloride formed
(Figure S3).

Reduction of U(VI) to Stable U(V). Uranium M4 edge
HERFD-XANES spectra were used to determine the oxidation
state of U associated with the Fe(II)/Fe(III) (oxyhydr)oxide
phases (Figure 1).19,45,46 The energy of the XANES peak

position showed a systematic decrease as the Fe(II)/Fe(III)
ratio increased (Figure S4) from 3726.5 eV [at 0.5 Fe(II)/
Fe(III)] to 3726.3 eV [at 2.0 Fe(II)/Fe(III)]. Comparison with
the peak position of the U oxidation state standards [U(VI) =
3726.95 eV, U(V) = 3726.4 eV, and U(IV) = 3725.2 eV]
suggests that U(V) dominated in all of the samples.
Furthermore, there were no indications of the higher-energy
peaks (3728.7 and 3732.0 eV) that are typical of U(VI).
However, in the Fe(II)/Fe(III) = 2.0 spectra, the small
shoulder on the low-energy side of the XANES spectrum
confirms the presence of U(IV) (Figure 1). Iterative trans-

Figure 1. U M4 edge HERFD-XANES of U co-precipitated with
magnetite [Fe(II)/Fe(III) = 0.5 and 0.6] and green rust [Fe(II)/
Fe(III) = 0.8 and 2.0] with standards U(IV)O2,

46 U(IV)2U(V)2O9,
46

and U(VI) adsorbed to ferrihydrite. Gray arrows indicate characteristic
U(VI) features.
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formation factor analysis (ITFA) of the HERFD-XANES data
identified the three main components present in the samples
(Figure S5) and indicated that at Fe(II)/Fe(III) = 0.5−0.8,
87−96% of U was present as U(V), with the remainder being
from U(VI) for Fe(II)/Fe(III) = 0.5 and U(IV) for Fe(II)/
Fe(III) = 0.6 and 0.8 (Table S1). At Fe(II)/Fe(III) = 2.0, U(V)
still dominated but the amount of U(IV) increased to
approximately 28%. The U L3 edge XANES also supports
stabilization of U(V) with XANES edge positions for all the
samples (17169.6−17171.2 eV) between those of U(VI)
(17173.4 eV) and U(IV) (17170.3 eV). Additionally, shifts in
the U L3 edge XANES post-edge resonance features to a lower
energy relative to that of the uranyl U(VI) standard indicate the
formation of a uranate-like coordination47 consistent with the
reported U coordination within magnetite (Figure S6).16,19

Incorporation of U within Magnetite and Green Rust.
U L3 edge EXAFS spectra (Figure S7 and Table S2) were
analyzed to determine the molecular scale speciation of U
associated within the magnetite and green rust mineral phases.
For U associated with magnetite [Fe(II)/Fe(III) = 0.5 and 0.6],
the best fits confirm 4−4.5 oxygen backscatterers at 2.17(1) Å,
indicative of uranate-like coordination,8,13,15,16,19,47 which is
consistent with our interpretation of the L3 edge XANES
spectra. The U−O coordination number is lower than would be
predicted for an octahedral site (i.e., <6) because of the
presence of a proportion of either U(IV)O2 or U(VI) within
the samples. The fitting of Fe shells to the EXAFS was then
informed by assuming that incorporation of U into magnetite
occurred by substituting U for Fe at an octahedrally
coordinated Fe site. The fits confirmed the presence of two
U−Fe shells at 3.20(2) and 3.72(2) Å for Fe(II)/Fe(III) = 0.5
and 3.15(2) and 3.69(3) Å for Fe(II)/Fe(III) = 0.6, showing a
systematic and significant increase in the interatomic distance
relative to the Fe−Fe distances in magnetite (2.97 and 3.48 Å,
respectively38). At Fe(II)/Fe(III) = 0.6, the additional U−O
and U−U backscattering shells observed at 2.42(2) and 3.89(2)
Å, respectively, reflect the presence of U(IV) supporting the
HERFD-XANES data, and assuming an error of ±1 on the
coordination number, the proportions of U(IV) are within
error [i.e., 4−20% U(IV)]. Finally, the presence of oxygen
backscatterers at 1.81(2) and 2.43(2) Å in the fit for the
Fe(II)/Fe(III) = 0.5 sample suggests a modest contribution
from U(VI) in uranyl dioxygenyl coordination. This was
confirmed by the ITFA analysis and has previously been
attributed to U(VI) adsorbed to magnetite.8,15

For Fe(II)/Fe(III) = 0.8 and 2.0 samples, the U−O
coordination environment in green rust showed differences
when compared to the magnetite system, with U−O distances
at approximately 1.90(6) and 2.17(1) Å again indicative of
uranate-like coordination. Similar to the magnetite systems,
additional U−O and U−U shells at 2.46(2) and 3.89(1) Å
confirm the presence of U(IV)O2, which is consistent with the
HERFD-XANES analysis and previous studies.25,48 Similar to
the magnetite system, fitting of additional Fe shells was
informed by the green rust structure and assumes direct
substitution of octahedrally coordinated Fe by U. The best fits
include six Fe atoms at 3.09(1) and 3.28(2) Å with an
additional shell of four Fe atoms at 5.24(3) Å. These fits are
consistent with the Fe−Fe distances in green rust, which are
3.19 and 5.52 Å, respectively. The dissolution experiments for
the Fe(II)/Fe(III) = 0.5, 0.6, and 0.8 samples (Figure S8) show
an initial release of 35−40% of U with minimal Fe dissolution,
followed by congruent dissolution of U and Fe. This suggests

that 60−65% of the U is distributed within the magnetite and/
or green rust particles, with the remaining U being discrete U
phases (i.e., UO2) or near-surface-associated U(V)/U(VI).
Overall, the EXAFS and dissolution data confirm that U(V)

is incorporated within octahedral sites in the Fe(II)/Fe(III)
(oxyhydr)oxide phases in a uranate-like coordination environ-
ment. This is consistent with several recent experimental and
theoretical reports showing U can directly substitute for
octahedrally coordinated Fe in iron (oxyhydr)oxide mineral
phases.8,15,16,19,31 Our work extends these observations for the
first time to systems in which U(V) is the dominant species
during direct precipitation of both magnetite and green rust.

Mechanism of Incorporation of U(V) into Magnetite
and Green Rust. Our results show that direct co-precipitation
of U(VI) with magnetite and green rust leads to reduction of
U(VI) to U(V) and subsequent stabilization within the bulk
structure of both minerals. The stabilization of U(V) via
incorporation into Fe(II)/Fe(III)-bearing iron (oxyhydr)oxides
has been hypothesized in several systems,8,15,16 with very recent
work postulating U(V) stabilization via incorporation into
magnetite.19 For the current work, in both systems U(V) is
incorporated into the mineral structures via direct substitution
of U for octahedrally coordinated Fe. In magnetite, the average
U(V)−O bond length is 2.17(1) Å [Fe(II)/Fe(III) = 0.5 and
0.6], consistent both with U(V) in uranate-like coordina-
tion19,47 and with recent atomistic simulations that predict a
U−O distance of 2.08 Å for this system.19,31,49 The U−Fe
interatomic distances derived from the EXAFS data (i.e., 3.15−
3.20 and 3.69−3.72 Å) are consistent with those previously
published.19 The U−Fe distances are ≈0.2 Å longer than the
Fe−Fe distances in magnetite, but the distance between the
two Fe shells matches that of pure magnetite [≈0.5 Å (Table
S2)]. Again these values are consistent with U(V) incorpo-
ration simulations for the first Fe shell (3.15 Å) in magnetite.31

The reason for the increased interatomic distances is unlikely to
be the size of the incorporated U(V) [the octahedral crystal
radius of U(V) is 0.9 Å, and the radii for Fe(II) and Fe(III) are
0.92 and 0.785 Å, respectively]; rather, strengthened repulsive
electrostatic interactions between U(V) and the Fe(II/III)
atoms pushed the iron out.31 The low coordination numbers of
the U−Fe shells (2) relative to that of pure magnetite (6) are
likely due to the nanoparticulate nature of magnetite, which
leads to a proportion of the U being near-surface-associated.50

This is consistent with the dissolution data that shows 35−40%
of U is released with minimal Fe dissolution (Figure S8),
suggesting this fraction is near-surface-associated U(V)/U(VI)
and UO2, with the remaining U distributed evenly throughout
the particles. The presence of U(IV) at the (near) surface of the
particles is likely due to the presence of Fe(II), which provides
strong reducing conditions, resulting in the reduction of sorbed
U to U(IV) surface complexes that can transform into UO2
particles.
The incorporation of U(V) into green rust [Fe(II)/Fe(III) =

0.8 and 2.0] again occurs via direct substitution for octahedrally
coordinated Fe within the sheet structure of the layered double
hydroxide. In addition, the dissolution data indicate that 35−
40% of U is present as a discrete phase or is near-surface-
associated, which is consistent with the presence of UO2 in the
XAS, formed via the process stated above, and some near-
surface-associated U(V). The EXAFS data indicate that the
U(V) local coordination is different compared to that of
magnetite (Figure S7). Indeed, the best fit for these samples
confirmed two oxygens at ≈1.9 Å and a shell of four equatorial
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oxygens at 2.17 Å, again consistent with a uranate-like
coordination environment (Table S2). This difference in
U(V)−O coordination relative to that of magnetite is
presumably due to the layered structure of the green rust and
similar to that observed for incorporation of U(V) into other
layered iron (oxyhydr)oxides (i.e., lepidocrocite).51 Here,
incorporation of U(V) within isolated octahedral sheets
evidently provides significantly less steric constraint on the
U(V)−O octahedron relative to U(V) in the highly constrained
cubic spinel structure of magnetite. The variation in the axial
and equatorial U−O bond lengths in the U(V) incorporated
within green rust clearly leads to local distortion of the green
rust octahedral sheet and splitting of U−Fe distances relative to
the Fe−Fe distances in green rust (Table S2). Overall, the best
fit indicates three or four Fe−O octahedra adjacent to the short
(1.9 Å) U−O axial oxygens and approximately two Fe−O
octahedra adjacent to the long (2.17 Å) U−O equatorial
oxygen distances (Figure 2). This is consistent with the U(V)
being present in a distorted octahedral environment and is
presumably due to the enhanced flexibility of the octahedral
sheet in green rust compared to octahedral sites within cubic
magnetite.
The novel incorporation of U(V) in green rust is in contrast

to the results of previous sorption studies in which U(IV)
surface complexes or UO2(s) was observed as the reaction end
product.25,48,52

The observed energy shift of the U(V) M4 edge HERFD-
XANES main peak position (Figure 1) for different Fe(II)/
Fe(III) ratios (Figure S4) from 3726.5 eV [Fe(II)/Fe(III) =
0.5] to 3726.3 eV [Fe(II)/Fe(III) = 2.0] may relate to the
different strengths of the covalent bond between the U and
neighboring atoms.53 Electronic structure calculations (Figure
S9) show a clear difference in the distribution of density of
states for U incorporated into the octahedral site of magnetite
relative to green rust. The hybridization between U f states and
Fe d states above the Fermi level is much stronger for U
incorporated into green rust than for U incorporated into
magnetite. This may be associated with a stronger, more
covalent, U bond in green rust compared to the U bond in the
magnetite structure.
Mechanism of U(V) Stabilization. Our results suggest

that U(V) incorporation during magnetite and green rust
formation occurs via a two-step process (abstract graphic).
First, we suggest that U(VI) is adsorbed to the surface of the

growing Fe(II)/Fe(III) (oxyhydr)oxide nanoparticles and
undergoes reduction to U(V) via one-electron transfer.8

Second, during rapid crystal growth, the U(V), which is
compatible with the Fe octahedral site in both magnetite19 and
green rust, becomes incorporated within the structure. These
steps are consistent with those proposed for U(V) incorpo-
ration during goethite formation;14 however, further research is
required to determine the exact nature of each step in the
process. Recent work has highlighted that disproportion of
U(V) can occur on the magnetite surface, implying that
stabilization of structural U(V) may occur only during rapid
crystal growth.10 Under these conditions, isolation of U(V)
within the mineral structure may prevent its disproportionation
to U(IV) and U(VI). Indeed, U(V) is reportedly stable in
magnetite for up to 550 days, suggesting that incorporated
U(V) may be stable over extended time periods.15

Furthermore, steric constraints seem likely to favor U(V)
stabilization in these systems as U(IV) strongly prefers larger
coordination environments (e.g., n = 8).8,13,20 Indeed, steric
constraints may be the most crucial factor in stabilizing U(V) as
both magnetite and green rust are electrically conductive,54 and
therefore, physical isolation of U(V) alone seems unlikely to
prevent disproportionation.

Implications for U Speciation and the Fate of U in the
Environment. Here, we have shown the reduction of U(VI) to
U(V) followed by incorporation into both magnetite and green
rust is the dominant process during the direct precipitation of
these mineral phases. The potential for U(V) incorporation
processes to be dominant in these environmentally relevant
phases is certainly highlighted in this and other very recent
work19 and has important implications, which have not been
fully explored, for understanding and predicting U mobility in
engineered and natural environments. Clearly, the extent of
incorporation of U(V) into Fe(II)/Fe(III) (oxyhydr)oxides
forming under contaminated land and geodisposal conditions
needs to be fully quantified. Incorporation of U(V) into mineral
phases commonly present in contaminated environments may
offer a more resilient species for oxidative remobilization
compared to uraninite and adsorbed U(IV), which are readily
oxidized to soluble U(VI) in many environmental systems.16,55

The incorporation of U(V) into magnetite and green rust offers
a promising prospect for optimizing its incorporation in a range
of engineered settings, while the stability of U(V) in these
systems clearly warrants further investigation.

Figure 2. (A) Magnetite structure showing Fe−Fe distances38 and U−Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 0.6. (B) Green rust
structures showing Fe−Fe distances40 and U−Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 2.0. Yellow lines indicate shorter U−O
distances (1.9 Å), and white lines indicate longer U−O distances (2.17 Å).
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Uranium Redox Transformations after U(VI) Coprecipitation with
Magnetite Nanoparticles. Environ. Sci. Technol. 2017, 51, 2217−2225.
(20) Skomurski, F. N.; Ilton, E. S.; Engelhard, M. H.; Arey, B. W.;
Rosso, K. M. Heterogeneous reduction of U6+ by structural Fe2+
from theory and experiment. Geochim. Cosmochim. Acta 2011, 75 (22),
7277−7290.
(21) Kerisit, S.; Bylaska, E. J.; Massey, M. S.; McBriarty, M. E.; Ilton,
E. S. Ab initio molecular dynamics of uranium incorporated in goethite
(α-FeOOH): Interpretation of X-ray absorption spectroscopy of trace
polyvalent metals. Inorg. Chem. 2016, 55 (22), 11736−11746.
(22) Refait, P.; Genin, J. M. R. The oxidation of ferrous hydroxide in
chloride-containing aqueous media and pourbaix diagrams of green
rust one. Corros. Sci. 1993, 34 (5), 797−819.
(23) Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; van
der Laan, G.; Arenholz, E.; Tuna, F.; Lloyd, J. R. Control of
nanoparticle size, reactivity and magnetic properties during the
bioproduction of magnetite by Geobacter sulfurreducens. Nano-
technology 2011, 22 (45), 455709.
(24) O’Loughlin, E. J.; Larese-Casanova, P.; Scherer, M.; Cook, R.
Green Rust Formation from the Bioreduction of γ−FeOOH
(Lepidocrocite): Comparison of Several Shewanella Species. Geo-
microbiol. J. 2007, 24 (Ii), 211−230.
(25) Dodge, C. J.; Francis, A. J.; Gillow, J. B.; Halada, G. P.; Eng, C.;
Clayton, C. R. Association of uranium with iron oxides typically
formed on corroding steel surfaces. Environ. Sci. Technol. 2002, 36
(16), 3504−3511.

Environmental Science & Technology Letters Letter

DOI: 10.1021/acs.estlett.7b00348
Environ. Sci. Technol. Lett. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00348
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.7b00348/suppl_file/ez7b00348_si_001.pdf
mailto:sam.shaw@manchester.ac.uk
http://orcid.org/0000-0002-0716-7589
http://orcid.org/0000-0002-2320-6330
http://orcid.org/0000-0001-6473-2743
http://orcid.org/0000-0002-6353-5454
http://dx.doi.org/10.1021/acs.estlett.7b00348


(26) Tremaine, P. R.; LeBlanc, J. C. The solubility of magnetite and
the hydrolysis and oxidation of Fe2+ in water to 300°C. J. Solution
Chem. 1980, 9 (6), 415−442.
(27) Music,́ S.; Ristic,́ M. Adsorption of trace elements or
radionuclides on hydrous iron oxides. J. Radioanal. Nucl. Chem.
1988, 120 (2), 289−304.
(28) Latta, D. E.; Mishra, B.; Cook, R. E.; Kemner, K. M.; Boyanov,
M. I. Stable U(IV) complexes form at high-affinity mineral surface
sites. Environ. Sci. Technol. 2014, 48 (3), 1683−1691.
(29) Scott, T. B.; Allen, G. C.; Heard, P. J.; Randell, M. G. Reduction
of U(VI) to U(IV) on the surface of magnetite. Geochim. Cosmochim.
Acta 2005, 69 (24), 5639−5646.
(30) Wang, Z.; Ulrich, K.-U.; Pan, C.; Giammar, D. E. Measurement
and Modeling of U(IV) Adsorption to Metal Oxide Minerals. Environ.
Sci. Technol. Lett. 2015, 2 (8), 227−232.
(31) Kerisit, S.; Felmy, A. R.; Ilton, E. S. Atomistic simulations of
uranium incorporation into iron (hydr)oxides. Environ. Sci. Technol.
2011, 45 (7), 2770−2776.
(32) Pearce, C. I.; Qafoku, O.; Liu, J.; Arenholz, E.; Heald, S. M.;
Kukkadapu, R. K.; Gorski, C. A.; Henderson, C. M. B.; Rosso, K. M.
Synthesis and properties of titanomagnetite (Fe 3-xTi xO 4)
nanoparticles: A tunable solid-state Fe(II/III) redox system. J. Colloid
Interface Sci. 2012, 387 (1), 24−38.
(33) Doornbusch, B.; Bunney, K.; Gan, B. K.; Jones, F.; Graf̈e, M.
Iron oxide formation from FeCl2 solutions in the presence of uranyl
(UO22+) cations and carbonate rich media. Geochim. Cosmochim. Acta
2015, 158, 22−47.
(34) Burke, I. T.; Mosselmans, J. F. W.; Shaw, S.; Peacock, C. L.;
Benning, L. G.; Coker, V. S. Impact of the Diamond Light Source on
Research in Earth and Environmental Sciences: Current Work and
Future Perspectives. Philos. Trans. R. Soc., A 2015, 373, 20130151.
(35) Dent, A. J.; Cibin, G.; Ramos, S.; Smith, A. D.; Scott, S. M.;
Varandas, L.; Pearson, M. R.; Krumpa, N. A.; Jones, C. P.; Robbins, P.
E. B18: A core XAS spectroscopy beamline for Diamond. J. Phys.: Conf.
Ser. 2009, 190 (1), 012039.
(36) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS:
Data analysis for X-ray absorption spectroscopy using IFEFFIT. J.
Synchrotron Radiat. 2005, 12, 537−541.
(37) Bannister, M. J.; Taylor, J. C. The crystal structure and
anisotropic thermal expansion of β-uranyl dihydroxide, UO 2 (OH) 2.
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26 (11),
1775−1781.
(38) Fleet, M. E. The structure of magnetite. Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem. 1981, 37 (4), 917−920.
(39) Barrett, S.; Jacobson, A. J.; Tofield, B. C.; Fender, B. E. F. The
Preparation and Structure of Barium Uranium Oxide BaUO3+X. Acta
Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 2775−
2781.
(40) Simon, L.; Franco̧is, M.; Refait, P.; Renaudin, G.; Lelaurain, M.;
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