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1 Introduction

There is a growing technology-driven interest in using external influences to move
or shape small quantities of liquids, referred to as microfluidic actuation. The use
of electrical, rather than mechanical, forces to achieve this actuation is convenient
because the resultant devices contain no moving parts. Existing non-mechanical mi-
crofluidic actuation techniques that are driven by the application of a voltage include
electrowetting and liquid dielectrophoresis [9], with many applications including
lab-on-a-chip [10], polymer surface patterning [16], as well as optimisation of opti-
cal properties for polymer microlenses [12, 20], and droplet driven displays [7].

When an ionic, conducting liquid drop is subjected to a uniform electric field,
the drop deforms as a result of the electric stresses on the interface, and it elongates
in the direction of the electric field [17]. In this work we consider a sessile drop of
an incompressible liquid with a high conductivity resting on the lower plate inside
a parallel plate capacitor (Fig.1) subjected to a relatively low frequency A.C. field.
This situation is of particular interest to display device applications where the de-
formation of the drop can be used to change the optical properties of an image
pixel [7]. With the application of an electric field the drop deforms into a new static
shape where the apex of the drop rises towards the upper plate in order to balance the
Maxwell electric stresses, surface tension and hydrostatic pressure due to gravity on
the interface. The lower electrode is coated with a thin solid dielectric layer, so the
liquid drop is shielded from both electrodes. In this situation the mobile ions will
reconfigure to reduce the electric field inside the drop to zero, so that the electric
potential of the drop is a constant.

Previous experimental work on the deformation of sessile conductive drops in
this geometry has included work on soap bubbles [2], polymer drops [13], water
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Fig. 1 Sketch of the geometry of a sessile drop resting on the lower plate inside a parallel plate
capacitor. The lower electrode is coated with a thin solid dielectric layer. An electric field applied
across the capacitor plates deforms the drop (b).

drops in air [3, 6, 14], water drops immersed in dielectric oil [15], and various alco-
hols in air [4, 5, 18]. As well as different liquids, these experiments also considered
different substrate treatments (untreated, hydrophilic and hydrophobic), and there-
fore the initial contact angles of the drop varied greatly (specifically from from 15
to 160 degrees) [19]. Theoretical work in this geometry has tended to employ nu-
merical techniques to solve the coupled electrostatic and augmented-Young-Laplace
equations for the electric field and drop profile. To simplify the process, many au-
thors consider small drops where the assumption of negligible gravity is valid (see
e.g. [1, 2, 13]).

In this paper we consider, experimentally and theoretically, the situation of
pinned conductive liquid drops with contact angles that are not equal to, but are
close to, π/2. Using both numerical and asymptotic approaches we find solutions
to the coupled electrostatic and augmented-Young-Laplace equations which agree
very well with the experimental results. Our asymptotic solution for the drop profile
extends that of [2] to drops that have initial contact angles close to π/2 and higher
values of the electric field, and provides a predictive equation for the deformation
as a function of initial contact angle and drop width, surface tension and applied
voltage.

2 Experimental setup

Figure 1 shows the experimental setup. A sessile drop of the liquid trimethylol-
propane triglycidyl ether (TMPGE) rests on the lower plate inside a parallel plate
capacitor with gap d between the electrodes. TMPGE is often considered a non-
conducting dielectric material. However, dielectric studies show that, at the frequen-
cies and voltages used in our experiments, this is a lossy material with a high con-
ductivity that masks the dielectric polarisability so that the liquid is more accurately
considered as a conductive liquid. The electrodes were formed from a continuous
layer of transparent conductor, indium tin oxide on borosilicate glass slides, and
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on the lower plate there is a 1 micron thick layer of the dielectric material SU8,
which is coated with a commercial hydrophobic coating to give contact angles close
to π/2. The surface tension of the liquid was found to be 40.5 mN m−1 and the
value of the density was measured as 1157 kg m−3. In this study A.C. voltages
at 1 kHz were used and accurate values for the small height changes in the range
1 to 40 µm were obtained using a 20× microscope. Experiments were conducted
for 8 drops of various sizes with contact angles ranging from 1.50 to 1.62 radians
(86.1 to 93.1 degrees) and a range of cell gap to drop radius ratios from 2.45 to
4.21. In all experiments the drop contact line was observed to be pinned with no
appreciable movement even at the highest voltages used. Experimental results for
the height change at the top of the drop ∆h will be shown in §4 when comparisons
with numerical solutions of the theoretical model are made.

3 Theoretical model

In our theoretical model an axisymmetric drop of an incompressible, perfectly con-
ductive liquid rests on the lower plate inside a parallel plate capacitor surrounded by
a perfect dielectric, in this case air, as shown in Fig. 1. Guided by the experimental
results, the contact line of the drop is assumed to be pinned and we take the drop
base diameter to be a constant 2b0; the contact angle without an electric field applied
is denoted by θc, while the contact angle with an electric field applied is denoted by
θc +∆θc, where ∆θc is the electric-field-induced change in the contact angle. The
capacitor plates are separated by a distance d, and we assume that the thickness of
the dielectric layer on top of the lower electrode is negligible. The electric potential
on this lower electrode is therefore assumed to be zero, and at the top electrode the
electric potential is equal to V . This is a reasonable approximation given that the
thickness of the dielectric layer is small, 1 µm, compared to the other dimensions of
our system: b0 and d are of the order of millimetres.

We use spherical polar coordinates with an origin at the centre of the base of
the drop with r being the distance from the origin and θ the angle the radial vector
makes with the axis of symmetry. The drop interface is then defined as the zero level
of the function η = r−R(θ), so that at any particular angle θ the distance of the
interface from the origin is R(θ).

The drop interface R(θ) and the electric field E = −∇U , where U(r,θ) is the
electric potential, are governed by Laplace’s equation and the normal stress balance,
often termed the augmented Young–Laplace equation. Since the drop is assumed
to be a perfectly conductive liquid, the electric potential inside the drop will be
constant, and determined by the proximity of the lower electrode which is fixed at
U = 0. The upper substrate is held at a potential U = V . The boundary conditions
for the interface are those of axisymmetry and that the contact line is fixed at r = b0.
In addition, the volume of the drop V is assumed constant, a condition that allows
the determination of the drop pressure p.
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The governing equations and boundary conditions are made dimensionless by
scaling distance by b0, so that r = b0r∗ and R = b0R∗, and by writing

V =
2πb3

0
3

V ∗, E =
V
d

E∗, U =
V b0

d
U∗, p− pa =

σ
b0

p∗, (1)

and we define a non-dimensional electric Bond number, gravitational Bond number,
and scaled cell gap as

δ 2 =
ε0ε2V 2b0

σd2 , G =
ρgb2

0
σ

, D =
d
b0

, (2)

respectively. Here pa is the constant air pressure, ρ is the fluid density, σ is the
constant surface tension, ε0 is the permittivity of free space and ε2 is the relative
permittivity of the air, which is approximately equal to one.

Then, with the stars dropped for clarity, the drop interface R and the electric
potential U must satisfy

∇2U =
1
r2

∂
∂ r

(
r2 ∂U

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂U
∂θ

)
= 0, (3)

p−GRcosθ +δ 2
(
(E ·n)2 − 1

2
|E|2

)
= ∇ ·n, (4)

subject to the boundary conditions

U(r,π/2) = 0, U(r,θ) = D on r cosθ = D, U(R,θ) = 0, (5)
R(π/2) = 1, R′(0) = 0, (6)

and the volume constraint

V =
∫ π/2

0
R3 sinθ dθ = constant. (7)

In order to compare to experimental measurements we consider the height change
at the top of the drop, ∆h = R(0)− R(0)|δ 2=0, where R(0)|δ 2=0 is the initial height
of the drop without an electric field applied.

Using this theoretical model of the experimental system we will carry out numer-
ical simulations and compare with the experimental results. Using evidence from
these numerical simulations, we can find asymptotic solutions in appropriate lim-
its, although these calculations are only summarised here and will be detailed else-
where.
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Figure 1: Change in drop height at the top of the drop �h plotted against �2
for each experiment

(stars) along with the full numerical solution (solid line). Also shown are numerical solutions

using two simplifying assumptions: with gravity neglected (dashed line) and with an upper

electrode very far from the drop (dash-dotted line).

1

Fig. 2 Change in height at the top of the drop ∆h plotted against electric Bond number δ 2 for each
experiment (stars) along with the full numerical solution (solid line). Also shown are numerical
solutions using two simplifying assumptions: with gravity neglected (dashed line) and with an
upper electrode very far from the drop (dash-dotted line).

4 Numerical results and comparison with experimental results

The theoretical model described above was solved numerically using COMSOL [8]
and MATLAB [11], where solutions to Laplace’s equation (3), subject to (5), and
solutions to the normal stress balance (4), subject to (6), are found iteratively until
convergence is achieved. Figure 2 compares the experimentally measured change in
height at the top of the drop (stars) to the full numerical solution (solid line) for the
eight experimental drops. Figure 2 illustrates the validity of the numerical solutions
over a range of parameter values: the gravitational Bond number G which increases
from panel (a)–(h), the cell gap to drop radius D which decreases from panel (a)–(h),
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and the initial contact angle θc. We see that there is very good agreement between
the experimental results and the numerical solution.

Figure 2 also shows numerical solutions using two simplifying assumptions: with
gravity neglected (dashed line) and with the upper electrode very far from the drop
(dash-dotted line). We see that, for all values of D we consider, the assumption
of infinite cell gap seems valid and there is good agreement between theory and
experiments. Unsurprisingly, since G > 0.1 for all drops, the numerical solutions
with G = 0 overestimate the deformation, although the numerical solutions with
gravity included do reproduce the experimental results.

From Fig. 2 we see that the deformation may be approximated by ∆h = α0,2δ 2+
α1,2εδ 2 +α0,4δ 4, and fitting to the experimental results we find coefficients α0,2 =
0.366±0.012, α1,2 =−1.059±0.419 and α0,4 = 0.090±0.096. For the theoretical
model we find the numerically determined coefficients α0,2 = 0.375, α1,2 =−0.966
and α0,4 = 0.541. The experimental coefficients for α0,2 and α1,2 agree well with the
theoretical coeffcients, although the large amount of scatter in experimental values
for the α0,4 coefficient suggests that the level of noise in the experimentally obtained
deformations is of order δ 4.

5 Summary and discussion

In this short paper we have considered, both experimentally and theoretically,
pinned liquid drops with contact angles that are close to π/2. Numerical solutions
of the theoretical model agree very well with experimental results for 8 drops with
contact angles ranging from 86.1 to 93.1 degrees and cell gap to drop radius ratios
from 2.45 to 4.21.

For these experiments it was also noted that the assumption of an infinite cell
gap D → ∞ was a good approximation to the experimental situation. Also, although
a model with the further simplifying assumption of zero-gravity G = 0 did not ac-
curately reproduce the experimental results, the fit to experiments was sufficiently
close to consider a simplified model in order to make analytic progress. Therefore,
an approximate analysis of the theoretical model, with G → 0 and D → ∞, was un-
dertaken (further details of which will be published elsewhere). For this analysis we
obtain,

∆h =
3
8

δ 2 −
(

1
4
+ ln2

)
εδ 2 +

(
69
64

− 3
4

ln2
)

δ 4 = 0.375δ 2 −0.943εδ 2 +0.558δ 4,

which is a very good approximation to the numerically obtained results from the full
model, and can readily be extended to all orders. The expressions for ∆h that are
described in this paper predict a reduction in the leading order deformation at the
top of the drop as the contact angle decreases (ε increases). This numerical imple-
mentation of the theoretical model, as well as the approximate analytical solution,
therefore provide accurate solutions for the drop profile R(θ) and electric potential
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U(r, θ), and form a useful predictive tool for the electro-manipulation of a conduc-
tive sessile drop in a parallel plate capacitor.
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