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Fourier relationship between angular position and optical orbital angular momentum
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We demonstrate the Fourier relationship between angular position and angular momentum for a
light mode. In particular we measure the distribution of orbital angular momentum states of light
that has passed through an aperture and verify that the orbital angular momentum distribution is
given by the complex Fourier-transform of the aperture function. We use spatial light modulators,
configured as diffractive optical components, to define the initial orbital angular momentum state
of the beam, set the defining aperture, and measure the angular momentum spread of the resulting
beam. These measurements clearly confirm the Fourier relationship between angular momentum
and angular position, even at light intensities corresponding to the single photon level.

Introduction. The spin angular momentum of a light
beam is manifest as circular polarisation and can be at-
tributed to the helicity of individual photons. By con-
trast, the orbital angular momentum of a light beam is
manifest in ℓ intertwined helical phase fronts, with an az-
imuthal phase term exp(iℓφ) , which carry an associated
orbital angular momentum (OAM) of ℓ~ per photon [1].
Both the spin and orbital angular momentum of light can
be transferred to solid objects, causing them to rotate
about their own axis or around the beam axis respec-
tively [2]. Quantized spin and OAM have been measured
for single photons [3]. Just like linear momentum and
linear position, angular momentum and angular position
are related by a Fourier relationship [4], linking the stan-
dard deviations of the measurements. This is a purely
classical phenomenon, but the Fourier relation also holds
for quantum observables and in the quantum regime the
Fourier relation is associated with the Heisenberg uncer-
tainty principle. Although this concept forms the basis of
various calculations [5, 6] and experiments [7] its validity
has never been directly tested. Here we present measure-
ments that test the Fourier relation between the orbital
angular momentum of light and its azimuthal probability
(i.e. intensity) distribution.

Fourier Conjugate Pairs. Linear momentum and
position are both unbounded and continuous variables of
a physical system and are related by a continuous Fourier
transform. For angular momentum and angular position
the 2π periodic nature of the angle variable means that
the relationship is a Fourier-series leading to discrete val-
ues of the angular momentum. Assuming a Fourier re-
lationship between the distribution of angular momenta,
ψℓ, and the angular distribution, Ψ(φ), we can express
one observable as the generating function of the other
[10],

ψℓ =
1√
2π

∫ +π

−π

dφΨ(φ) exp(−iℓφ), (1)

Ψ(φ) =
1√
2π

+∞
∑

ℓ=−∞

ψℓ exp(iℓφ). (2)

When light passes through an aperture or mask with an

angular dependance given by ΨMask(φ) its phase and/or
intensity profile is modified such that

ΨTransmitted(φ) = ΨIncident(φ) × ΨMask(φ), (3)

where for simplicity, we have omitted the normalisation
factor. If the incident light is in a pure OAM state, de-
fined by a single value of ℓ, this simplifies to

ΨTransmitted(φ) = exp(iℓφ) × ΨMask(φ). (4)

Note that as with the light beam in (2), the complex
transmission function of the mask can be expressed in
terms of its angular harmonics with Fourier coefficients
An,

ΨTransmitted(φ) =
+∞
∑

n=−∞

An exp(i(ℓ+ n)φ), (5)

where
∑+∞

n=−∞
|An|2 is the total intensity transmission

of the mask. This means that upon transmission, each
OAM component of the incident light acquires OAM side-
bands shifted by δℓ = n, where the amplitude of each
component is given by the corresponding Fourier coeffi-
cient of the mask,

ψδℓ = An=δℓ. (6)

In the experiments presented here we have used hard-
edge aperture segments of width Θ, i. e. ΨMask(φ) = 1
for −Θ/2 < φ ≤ Θ/2 and 0 elsewhere. A single-segment
mask can be expressed in terms of its Fourier coefficients
as

ΨMask(φ) =
Θ

2π

+∞
∑

n=−∞

sinc

(

nΘ

2

)

exp(inφ), (7)

hence giving OAM sidebands with amplitudes

ψδℓ = An=δℓ =
Θ

2π
sinc

(

δℓΘ

2

)

. (8)

More generally, any azimuthal intensity distribution with
m−fold symmetry only has angular harmonics at multi-
ples of m. Extending the design of the masks to comprise
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m identical equi-spaced apertures with Fourier compo-
nents

Ψ
(m)
Mask(φ) =

m
∑

q=1

ΨMask

(

φ+ q
2π

m

)

, (9)

we obtain OAM sidebands with amplitudes

ψ
(m)
δℓ = A

(m)
δℓ = Aδℓ

m
∑

q=1

exp
(

i
q

m
2πδℓ

)

=

{

mAδℓ for δℓ = Nm
0 otherwise

, (10)

where N is an integer. Consequently, in apertures with
two-fold symmetry, only every second OAM sideband is
present, and in three-fold symmetric apertures only ev-
ery third. In our experiments we use masks comprising
m hard-edge segments so that only every mth sideband
within the sinc envelope is present.

The complex transmission function ΨMask may also in-
clude phase information. Specifically we consider the sit-
uation where each of them hard-edged aperture segments
has a definite and non-zero relative phase, Φq. It is in-
structive to consider the m−fold symmetric composite
mask as a superposition of m single-segment apertures,
each giving rise to its own set of OAM sidebands which
may constructively or destructive interfere. This interfer-
ence between the individual OAM sidebands constitutes
a test of the Fourier relationship between angle and an-
gular momentum. In our experiments we investigate one
representative case, when the phase of the m segments
advances in discrete steps so that Φq = α2πq/m. The
Fourier components and hence OAM sidebands can then
be calculated according to

ψ
(m,α)
δℓ = Aδℓ

m
∑

q=1

exp
(

i
q

m
2π(δℓ+ α)

)

(11)

=

{

mAδℓ for δℓ = mN − α

Aδℓ
exp(i2π(δℓ+α))−1

1−exp(i2π(δℓ+α)/m) otherwise
.

If α is an integer, the central OAM component will be
shifted by δℓ = α, constructive interference will gener-
ate OAM sidebands at multiples of m, and destructive
interference will cancel any other sidebands. If α is not
integer, interference between light passing through the
different segments will modulate the sidebands. Note
that if m tends to infinity only the central peak at δℓ = α
remains, turning the mask effectively into a spiral phase
plate with optical step height αλ [11]. It is worth point-
ing out that these considerations still hold for pure phase
masks by setting mAδℓ = 1. Such masks generate OAM
modes of α modulo m, where m is given by the rotational
symmetry, and the integer α shifts between the different
sets.

FIG. 1: Experimental configuration using programmable spa-
tial light modulators to create specific OAM states (SLM1),
aperture them and measure the resulting OAM distribution
(SLM2).

Experimental Configuration. Within our experi-
mental configuration, see figure 1, we generate a low in-
tensity laser beam in a pure ℓ-state by transforming a col-
limated He-Ne laser (ℓ = 0) with a spatial light modula-
tor. Spatial light modulators act as reconfigurable phase
gratings, or holograms, giving control over the complex
amplitude of the diffracted beams. As is standard prac-
tice, our modulator is programmed with a diffraction
grating containing a fork dislocation to produce a beam
with helical phase front in the first diffraction order [8].
A second spatial light modulator is used to analyse the ℓ-
state. If the index of the analysing hologram is opposite
to that of the incoming beam, it makes the helical phase
fronts of the incoming beam planar again. A significant
fraction of the resulting beam can then be coupled into
a single-mode optical fibre. If the beam and analysing
hologram do not match, the diffracted beam has helical
phase fronts and therefore no on-axis intensity, resulting
in virtually no coupling into the fibre. To deduce the ℓ-
state, the analysing hologram is switched between various
indices whilst monitoring the power transmitted through
the fibre. It should be emphasised that the cycling of the
hologram index makes the detection process inherently
inefficient, where even with perfect optical components,
the quantum detection efficiency cannot exceed the re-
ciprocal of the number of different ℓ-states to be exam-
ined [9]. In principle an amplitude and/or phase mask
could be introduced at any position between the two
spatial light modulators. However, combining aperture
and analysing hologram on a single spatial light modula-
tor eases alignment and improves optical efficiency. We
achieve this combination by a modulo 2π addition of the
two holograms. We measure the light coupled into the
single mode fibre with an avalanche photodiode which en-
ables photon counting. Inserting a neutral density filter
immediately after the laser restricts the maximum count
rate to less than 100kHz so that at any one time there is
on average less than one photon within the apparatus.
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FIG. 2: The measured (bar) and predicted envelope (line)
distribution of OAM sidebands generated from an incident
ℓ = 0 (left) and ℓ = 2 (right) beam after transmission through
a hard-edge aperture of angular width π/4.

To investigate the detailed relation between the angu-
lar aperture function and the measured orbital angular
momentum states we adopt a family of aperture functions
comprising m equi-spaced segments of defined width and
relative phase. For each aperture function the transmit-
ted photons are analysed for the orbital angular momen-
tum states −18 < ℓ + δℓ < 18. One complication is
that the manufacturing limitations of the spatial light
modulators result in deviation from optical flatness by
three or four lambda over the full aperture. This de-
grades the point-spread function of the diffracted beam
and hence changes the efficiency of the mode coupling
into the fibre, spoiling the discrimination between dif-
ferent ℓ-states. Therefore, prior to their use within this
experiment, we optimise each of the spatial light mod-
ulators by applying a hologram of the Zernike terms
compansating for astigmatism to give the smallest point
spread function of the diffracted HG00 mode. These cor-
rection holograms were added to any of the holograms
calculated subsequently.

Experimental Results. For a single hard-edge aper-
ture of uniform phase and width Θ, the resulting integer
angular momentum distribution has a sinc function en-
velope centred on the ℓ of the incident mode, as given by
(8). Figure 2 shows the measured OAM sidebands for a
hard-edge aperture of width Θ = π/4. We find almost
perfect agreement between the observed distribution and
that predicted from the Fourier-relation. However, as
discussed, a more subtle test of the Fourier-relation is
when the aperture function is multi-peaked and when
these peaks are offset in phase. Introducing an aperture
comprising two segments of the same width generates
an OAM sideband distribution with the same envelope
function, but if the Fourier relationship holds true the
sidebands can interfere either constructively or destruc-
tively depending on the relative phase of the individual
components. Figure 3 compares the angular momentum
distribution as predicted from (11) with the one observed
in the experiment for the case of two (i.e. m = 2) dia-
metrically opposed hard-edge apertures, each of angular
width 2π/9. During the experimental sequence their rel-

FIG. 3: (colour online) Experimental result for two equi-
spaced segment apertures of angular width 2π/9. Panels A,
B and C show the observed angular momentum spectra for
δΦ = 0, π/2 and π, respectively, with the predicted envelope
function (solid line) and experimentally measured data (bars).
Even sidebands are plotted in red and odd sidebands in cyan.
The main panel shows the sums of coefficients of even (red
�) and odd (cyan �) OAM sidebands as a function of phase
difference, δΦ, between the segments. Solid curves show the
predicted variation while experimental data are plotted as
stars and crosses.

ative phase δΦ = Φ2 − Φ1 is varied from 0 to 2π (α is
varied from 0 to 1). As discussed, the OAM sidebands
of the two segments differ in their phase by (δℓ+α)× π.
When α = 0, the OAM sidebands with odd δℓ interfere
destructively. As the relative phase increases, the light
intensity in the odd modes rises at the expense of the even
modes until all the even modes disappear when δΦ = π.
At intermediate positions when δΦ = π/2 or 3π/2 even
and odd sidebands have equal weights. The width of the
aperture Θ changes the width of the sinc distribution but
not the underlying interference effects. Figure 4 shows
the results for four (i.e. m = 4) equi-spaced apertures,
at a phase difference of απ/2. Increasing α from 0 to 4
gives OAM sideband distributions in excellent agreement
to that predicted by (11).

Discussion and Conclusions. We have shown that
angle and angular momentum states are related as conju-
gate variables by a Fourier transformation, and that this
relationship holds for both amplitude and phase. Fourier
relationships of this type give rise to uncertainty relations
between the standard deviations of the conjugate vari-
ables. However, the 2π cyclic nature of angular measure-
ment raises difficulties in the formulation of an angular
uncertainty relation and the definition of a suitable angle
operator. An angle operator should yield results defined
within a chosen 2π radian range [12] . This approach
gives an uncertainty relation which limits the accuracy of
possible measurements to ∆φ∆Lz ≥ (~/2)|1− 2πP (φ0)|,
where P (φ0) = P (φ0 + 2π) is the normalised proba-
bility at the limit of the angle range [10]. This un-
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FIG. 4: (colour online) Experimental result for four equi-spaced apertures of angular width 2π/9. Sums of coefficients of all
4N (red �), 4N + 1 (green �), 4N + 2 (cyan �) and 4N + 3 (blue �), where N is an integer, angular momentum sidebands
as a function of phase difference between the two angular apertures. Solid curves show the predicted variation.

certainty relation may be seen as a consequence of the
Fourier-relationship, directly demonstrated in this paper.
Throughout our investigations, we used low light intensi-
ties corresponding to single photon flux rates. Although
all our measurements were classical in nature, the results
and Fourier-relationship should also hold at the single
photon or quantum level. Furthermore, while demon-
strated in the optical regime, the Fourier-relation is ex-
pected to be valid for any system having a wave nature
including superfluids or BECs.

Hard-edge apertures as used in this investgation, to
shape the azimuthal distribution of a light beam, can
be used to generate sidebands of the orbital angular mo-
mentum or indeed controlled superpositions of particular
orbital angular momentum states. The presence of side-
bands may create ambiguities if measured using holo-
graphic techniques but such modes are completely com-
patible with mode sorters based on the rotational sym-
metry of the modes [13].
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