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1 Introduction

As is evident in public commentary (see, e.g., Bernanke 2007 and Mishkin 2007), central
bankers and other policymakers pay considerable attention to measures of long-run infla-
tion expectations. These expectations are viewed as shedding light on the credibility of
monetary policy. Monetary policy tools work differently if long-run inflation expectations
are firmly anchored than if they are not. In general, monetary policy is thought to be
most effective when long-run inflation expectations are stable.

These considerations have contributed to the development of a large literature on the
measurement of long-run inflation expectations. One simple approach is to rely on direct
estimates of inflation expectations from surveys of professionals or consumers.1 For exam-
ple, Federal Reserve commentary such as Mishkin (2007) includes long-run expectations
based on the Survey of Professional Forecasters’ (SPF) projection of average inflation 1
to 10 years ahead.

Other approaches focus on econometric estimates of trend inflation. A large literature
uses econometric methods to estimate inflation trends and forecast inflation (see, among
many others, Stock and Watson, 2007, Chan, Koop and Potter, 2013, and Clark and
Doh, 2014).2 One portion of this literature combines econometric models of trend with
the information in surveys (see, among others, Kozicki and Tinsley, 2012, Wright, 2013,
Nason and Smith, 2014 and Mertens, 2015).3

In recent years, some countries have experienced extended periods of inflation running
below survey-based estimates of long-run inflation expectations. For example, Fuhrer,
Olivei, and Tootell (2012) show that actual inflation in Japan consistently ran below
(survey-based) long-run inflation expectations in their sample, from the early 1990s to
2010. More recently, in the United States, for each year between 2008 and 2015, inflation
in the core PCE price index ran below the SPF long-run forecast of roughly 2 percent
(which coincides with the Federal Reserve’s official goal for inflation).4 Even though
survey-based inflation expectations have been stable, actual inflation has been low enough
for long enough to pull some common econometric estimates of trend inflation well below
2 percent (see, e.g., Bednar and Clark 2014). These experiences raise the question of
whether it is possible for survey-based inflation expectations to become disconnected
from actual inflation. Such a disconnect (if irrational) would make such expectations less
useful for gauging the credibility of monetary policy and for forecasting inflation.

1Direct estimates of inflation expectations can also be obtained based on the relationship between
real and nominal bonds. However, estimates of break-even inflation calculated using these are usually
available only for a short time span. And there are reasons to expect that break-even inflation might
reflect factors other than just long run inflation expectations (e.g. if the risk premium is time-varying).
Faust and Wright (2013) find it too volatile to be a sensible forecast for long run expected inflation. For
these reasons, we do not use break-even inflation data in this paper.

2The reader is referred to Faust and Wright (2013) for a recent survey on inflation forecasting,
including a discussion of inflation surveys and methods for estimating trend inflation.

3Some DSGE models — developed in Del Negro and Schorfheide (2013) and references therein —
treat the inflation target of the central bank as a random walk process and include survey measures of
long-run inflation expectations as indicators of the target in model estimation. In a different vein, Aruoba
(2016) develops an econometric, three-factor model of the term structure of inflation expectations.

4This statement is based on Q4/Q4 inflation rates for each year. The statement also applies to
headline inflation, except that headline inflation rose above two percent for one year, 2011.
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In this paper we develop a new model to examine the relationship between inflation,
long-run inflation expectations, and trend inflation. We build on papers such as Kozicki
and Tinsley (2012) by using models which are more flexible in empirically important
directions, extending recent work with unobserved components models with stochastic
volatility (UCSV) such as Stock and Watson (2007, 2015), Chan, Koop and Potter (2013),
Clark and Doh (2014), Garnier, Mertens, and Nelson (2015), and Mertens (2015). Papers
such as Kozicki and Tinsley (2012) equate long run forecasts with trend inflation. Sim-
ilarly, econometric estimates of trend inflation are sometimes calibrated to be the same
as surveys. We also build on work by Nason and Smith (2014, 2016) that considers the
possible disconnect between inflation and short-run inflation expectations in the context
of a simple unobserved components model.

Our model permits us to assess the evidence for the links between trend inflation and
long-run inflation expectation that have been assumed in some of the aforementioned
literature. For example, the model of Mertens (2015) assumes that trend inflation moves
one-for-one with long-run inflation expectations but allows a constant difference in the
levels of trend inflation and long-run inflation expectations. Our approach allows us to
assess the evidence in favor such restrictions. We are able to estimate the relationship to
investigate whether equating trend inflation with inflation expectations based on surveys
improves the model of inflation. Our model permits the relationship to vary over time,
such that trend inflation can be equal to the forecasts provided in the surveys at some
points in time, but at other points in time forecasts can provide biased or inefficient
estimates of trend inflation. We include comparisons to other, restricted versions of
the model to assess the importance of such time variation to the trend estimate, model
fit, and forecasting. Another point of departure from the existing literature is that, in
our baseline model (although not all our models), we only use survey data on long run
inflation forecasts, allowing us to avoid the use of a subsidiary (possibly mis-specified)
model linking short-run forecasts to long run inflation expectations.

In our empirical work, we compare the fit and forecasting performance of our model
to more restricted alternatives and some other models from the literature, using data for
both the U.S. and a few other countries. We focus on results for CPI inflation and inflation
expectations from Blue Chip and show our key results to be robust to two other data
choices for the U.S. We present evidence that extensions over simpler approaches such as
the addition of stochastic volatility and time-varying coefficients are important in practice.
Survey-based measures of inflation expectations are found to be useful for estimating
trend inflation, producing smoother and more precise estimates than a UCSV model.
However, we also present evidence that the survey-based measures should not simply be
equated with trend inflation; the relationship between the two is more complicated and,
in some cases, time-varying. We include results from a pseudo-out-of-sample forecasting
exercise, which shows point and density forecasts from our model to be at least as good
as those from other models that have been found successful in the inflation forecasting
literature. After establishing these results in U.S. data, we consider model estimates
based on inflation and long-run survey expectations for Italy, Japan, and the UK. For
these countries, it continues to be the case that the evidence indicates long-run survey
expectations to be helpful to trend estimation, model fit, and forecasting. Although for
Italy the data indicate the survey and trend inflation move one-for-one with no bias, for
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Japan and the UK the data support a more flexible relationship.
Although our main empirical work does not directly address the question of why

long run surveys may differ from trend inflation, the final section of this paper includes
some discussion of this issue in light of recent work on informational rigidities in the
professionals’ forecasts by Coibion and Gorodnichenko (2015) and Mertens and Nason
(2015).

2 Econometric Modeling of Trend Inflation

As discussed in sources such as Mertens (2015), an unobserved components framework
is commonly used to model inflation, πt, as being composed of trend (or underlying)
inflation, π∗t , and a deviation from trend, the inflation gap, ct:

πt = π∗t + ct. (1)

The trend of inflation is defined (consistent with the Beveridge-Nelson decomposition)
as the infinite-horizon forecast of inflation conditional on the information set available in
period t, denoted Ωt:

lim
j→∞

E [πt+j|Ωt] = π∗t , (2)

which implies a random walk process for the trend π∗t and a stationary, mean-zero inflation
gap, ct.

There are many possible econometric models consistent with this simple decomposi-
tion, and we will argue for a particular modeling framework soon. But the basic justifica-
tion for using surveys of long run forecasts can be clearly seen from (2). If those surveyed
at time t about what inflation will be in period t+ j are rational forecasters, they can be
expected to be reporting E [πt+j|Ωt]. Thus, using (2), forecasts of long-run inflation will
correspond to trend inflation, π∗t . There are several ways that this relationship plus data
on long-run forecasts made at time t (zt) can be used to produce estimates of current
trend inflation, with Kozicki and Tinsley (2012) being an influential recent approach.

However, there are reasons to be cautious about simply equating long run forecasts
from surveys with inflation trends, partly in light of the simple observations on the recent
experiences in the U.S. and Japan noted in the introduction. For instance, surveys may
produce forecasts that are biased, at least at some points in time. Survey forecasts
at long horizons might also not move one-for-one with trend inflation. Surveys might
also contain some noise, due to factors such as changes in participants from one survey
date to another. In addition, papers such as Coibion and Gorodnichenko (2015) and
Mertens and Nason (2015) find evidence of informational rigidities such that professional
forecasters are slow to adjust their expectations. Accordingly, we desire an econometric
specification that allows us to estimate the relationship between trend inflation and the
long-run expectation of forecasters rather than imposing a particular form. In our model,
a finding that long run forecasts taken from surveys can be equated with trend inflation
is possible, but not assumed a priori.

Earlier work also suggests many other desirable features we want our econometric
model to have. First, Faust and Wright (2013) find improvements in forecast performance
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by using the inflation gap (as opposed to inflation itself) as a dependent variable and
modeling the inflation gap as deviations of actual inflation from a slowly evolving trend.
Many of the other studies mentioned above with time-varying inflation trends focus on
an inflation gap. Our econometric specification follows this practice.

Second, the inflation gap, ct, should be stationary but may exhibit persistence. For
instance, a central bank may tolerate deviations of inflation from a trend or target for a
certain period of time, provided such deviations are temporary. Furthermore, the central
bank’s toleration for such deviations may change over time. For instance, Chan, Koop
and Potter (2013) discuss how the high inflation in the 1970s may have been partly due
to the combination of a large inflation gap (with only a small increase in trend inflation)
with a Federal Reserve tolerant of a high degree of inflation gap persistence. When
Paul Volcker subsequently became the Fed chair, this tolerance decreased and inflation
gap persistence dropped. We want our model to be able to accommodate such shifts in
persistence.

Third, a large number of papers, such as Stock and Watson (2007), have found the
importance of allowing for stochastic volatility, not only in the inflation equation but also
in the state equations which describe the evolution of trend inflation. We include this
feature in all of our models.

Finally, a general theme of many papers on inflation modeling, including Faust and
Wright (2013) and Stella and Stock (2013), is time-varying predictability. The time-
varying persistence and stochastic volatility features mentioned above are two such sources
of time-varying predictability, accommodated by the model features mentioned above.
The work of D’Agostino, Gambetti, and Giannone (2013) also indicates time-varying pa-
rameters to be helpful to forecast accuracy. Accordingly, we want a model with not only
stochastic volatility but also time-varying parameters (TVP).

2.1 Baseline model

All of these features are built into the following extremely flexible model, which should
be able to accommodate any relevant empirical properties of the data on inflation (πt)
and the survey-based inflation expectation (zt). (Note that all of the errors defined
in the model below are independent over time and with each other.) We refer to this
specification as model M1:

πt − π∗t = bt(πt−1 − π∗t−1) + vt, (3)

zt = d0t + d1tπ
∗
t + εz,t + ψεz,t−1, εz,t ∼ N(0, σ2

z) (4)

π∗t = π∗t−1 + nt, (5)

bt = bt−1 + εb,t, εb,t ∼ TN(0, σ2
b), (6)

dit − µdi = ρdi (di,t−1 − µdi) + εdi,t, εdi,t ∼ N(0, σ2
di), i = 0, 1, (7)

vt = λ0.5v,tεv,t, εv,t ∼ N(0, 1), (8)

nt = λ0.5n,tεn,t, εn,t ∼ N(0, 1), (9)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi), i = v, n. (10)
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In this model, the inflation gap πt− π∗t follows an AR(1) process with a time-varying
coefficient and stochastic volatility. Allowing bt to be time-varying accommodates poten-
tial changes in the degree of persistence in the inflation gap. Note that we truncate the
innovations to the AR(1) coefficient in (6) so as to ensure the inflation gap is stationary
at every point in time (TN(µ, σ2) denotes the normal distribution with mean µ and vari-
ance σ2 truncated to ensure 0 < bt < 1). Trend inflation π∗t follows a random walk with
stochastic volatility in its innovations.

The long-run inflation expectation zt is dependent on trend inflation, with a time-
varying intercept d0t and slope coefficient d1t and an MA(1) error term.5 Accordingly,
our model captures three dimensions along with the survey expectation can provide what
we call a “biased” — a deliberate simplification of terms — measure of trend, through:
(1) a non-zero intercept, d0t; (2) a non-unity slope, d1t; and (3) an MA component in the
error term, reflected in ψ. We focus on the first two forms of “bias,”in either a constant
differential between trend inflation and the survey forecast or a failure of the survey to
move one-for-one with trend.6 Since d0t and d1t are time varying, we have the potential to
estimate changes in the relationship between long run forecasts and trend inflation. For
instance, it is possible that long run forecasts are unbiased estimates of trend inflation at
some points in time, but not others. Our model allows for this possibility, but a constant
coefficient model would not. Thus, investigating restrictions relating to d0t and d1t is of
economic interest. To allow for persistence in a long-term inflation forecast that may not
be adequately picked up by persistence in trend inflation, we add an MA(1) error term
to (4). Although the empirical evidence for the need for this MA error term is weak in
one of our U.S. data combinations (PCE inflation with PTR), in our baseline results for
the U.S. and in the results for other countries, the MA term is empirically important to
model fit and we include it in our general specification.

Variants of the model described above, excluding zt, involving only (possibly restricted
versions of) (3), (5), (6), (8), (9) and (10) have been used to estimate trend inflation by
several authors. For instance, the popular UCSV model of Stock and Watson (2007) is
this model with bt = 0, and Chan et al (2013) use this model with bounded trend inflation

5ur model is less restrictive than those used in some other studies that relate inflation and survey
measures of inflation expectations, our specification can be seen as consistent with the cointegration
restrictions imposed in these other studies (e.g., Mertens 2015, Mertens and Nason 2015, and Nason
and Smith 2014). These other studies impose stationarity of the difference between actual inflation
and survey expectations. Our model is consistent with cointegration of the survey expectation zt with
trend inflation π∗

t : the innovation term of the zt equation is a stationary MA(1) process. Although the
posterior of d0,t and d1,t need not be close to 0 or 1, respectively, our prior centers the initial values of
these coefficients at 0 and 1, respectively. So our prior implies cointegration of zt with trend inflation π∗

t

with a slope coefficient of 1. With π∗
t the source of integration in πt, it follows that we can think of πt

and zt as cointegrated as well.
6Conceptually, the distinction between the infinite horizon forecast that constitutes trend inflation

and the 10-year horizon of the survey expectation could cause d0,t to differ from 0 and d1,t to differ
from 1. In practice, though, for professional forecasters, it seems likely that the 10-year ahead survey
forecast is equivalent to an infinite horizon forecast. For example, since the Federal Reserve established
its longer-run inflation objective of 2 percent, the 10 year-ahead forecast of PCE inflation from the Survey
of Professional Forecasters has stayed close to 2 percent. Moreover, in a cross-country analysis, Mehrotra
and Yetman (2014) find that survey forecasts at just a 24-month ahead horizon tend to cluster around
central bank inflation targets.
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but without stochastic volatility in εn,t. We stress that stochastic volatility is often found
to be important in models of trend inflation such as these.7 This feature allows for the
possibility that the volatility of trend inflation or deviations of inflation from trend vary
over time.

By adding the additional equations (4) and (7) to a conventional unobserved compo-
nents model such as the one defined by (3), (5), (6), (8), (9) and (10), we can potentially
improve the model’s ability to fit historical inflation data and its estimates of trend infla-
tion. That is, adding the relationship between zt and π∗t should provide extra information
for estimating trend inflation beyond that provided in a univariate model involving in-
flation only. This information could improve precision of trend estimates, the model’s
ability to fit inflation, and forecast accuracy.

Our baseline model excludes an economic activity indicator from the inflation gap
equation (4). We do so in the interest of parsimony, motivated in part by evidence in the
forecasting literature (see Faust and Wright 2013 and references therein) of the difficulty
of using economic activity variables to improve predictions of inflation. However, in our
analysis for the U.S., we also consider a specification (denoted M6) augmented to in-
clude in the inflation equation an unemployment rate gap with a time-varying coefficient.
Our specification with the unemployment gap has precedents in other recent studies, in-
cluding: Stella and Stock (2013), which generalizes the UCSV formulation of Stock and
Watson to relate the inflation gap to an unemployment gap; Jarocinski and Lenza (2015),
which considers a specification involving a factor model of economic activity, for the pur-
pose of estimating the output gap, with a structure for inflation, trend inflation, and
inflation expectations that corresponds to a restricted, constant parameter version of our
formulation; and Morley, Piger, and Rasche (2015), which considers a bivariate, constant
parameter model relating inflation less a random walk trend to an unemployment gap.

Our baseline model includes only long-run inflation expectations since they should
most directly reflect trend inflation. From Blue Chip, we have data on short-run expec-
tations. To assess the potential value of short-horizon expectations, we also consider a
version of our model (denoted M6) augmented to include these expectations, using an
additional state equation which is the same as (4) except that a measure of short-run
inflation expectations is the dependent variable.

We use Bayesian methods to estimate all the unknown parameters of our models, in-
cluding latent variables such as trend inflation. The Markov Chain Monte Carlo (MCMC)
algorithm used for estimation is similar to that used in previous work (e.g. Chan et al,
2015) and, hence, we say no more of it here. The priors used in this paper are informa-
tive, but not dogmatically so. In models such as ours, involving many unobserved latent
variables, use of informative priors is typically necessary.8 An earlier version of this pa-
per, Federal Reserve Bank of Cleveland Working Paper 15-20, presented results from a
prior sensitivity analysis of our baseline model, showing our results are fairly robust to
changes in our prior. Complete details of the MCMC algorithm and prior are given in

7For the errors in other equations, preliminary estimates suggest that an assumption of homoskedas-
ticity is reasonable.

8Indeed, in the UC-SV model of Stock and Watson (2007), the stochastic volatility equations equiv-
alent to our (10) are assumed to have a common error variance and this common variance is fixed at a
specific value. Our prior is much less restrictive than this.
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the Technical Appendix.

2.2 Alternative, restricted models considered

To help assess the ability of our model to improve the precision of trend estimates, the fit
of inflation, and forecasts of inflation, we will also consider some more restricted models.
The first of these additional models, M2, restricts d0t and d1t to be constants, d0 and d1.
Model M3 imposes d0 = 0 and d1 = 1, which is the restriction that long-run inflation
forecasts are unbiased estimates of trend inflation. These two models will shed light on
the value of time variation in the coefficients and the value of allowing some bias in
the relationship between the survey expectation and trend inflation (using the broad
definition of bias indicated above).

Model M4 restricts our baseline model M1 by making no use of inflation expectations
— which will shed light on the value of those expectations to inflation modeling. As
such, it is a UCSV model like that of Stock and Watson (2007) but extended to allow an
autoregressive component:9

πt − π∗t = bt(πt−1 − π∗t−1) + vt, (11)

π∗t = π∗t−1 + nt, (12)

bt = bt−1 + εb,t, εb,t ∼ TN(0, σ2
b), (13)

vt = λ0.5v,tεv,t, εv,t ∼ N(0, 1), (14)

nt = λ0.5n,tεn,t, εn,t ∼ N(0, 1), (15)

log(λi,t) = log(λi,t−1) + νi,t, νi,t ∼ N(0, φi), i = v, n. (16)

Finally, model M5 is an AR(1) model in “gap form” similar to that used in Faust and
Wright (2013), which they describe as “amazingly hard to beat by much.” We call this
the Faust and Wright model below.10 We add stochastic volatility to this model to aid
in comparability with our own. Specifically, we define the gap as gt = πt− zt and use the
model:

gt = βgt−1 + εg,t, εg,t ∼ N(0, λg,t),

log(λg,t) = log(λg,t−1) + νg,t, νg,t ∼ N(0, φg),

where we assume |β| < 1. The forecast for πt+k given data until time t is computed by
adding zt to a forecast for gt+k.

3 Data

Policymakers are interested in a range of different measures of inflation, and the research
literature considers a range of measures. Accordingly, for the U.S., we provide results for

9The supplemental appendix of Cogley, Primiceri and Sargent (2010) makes use of a similar model.
10Our specification generalizes their “fixed ρ” model by estimating coefficients. Accordingly, our model

takes the same form as their “AR-gap” model, except that, at all horizons, we use the 1-step ahead form
of the model and iterated forecasts, whereas they use a direct multi-step form of the model.
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several combinations of measures of inflation and inflation expectations. Subsequently,
we present an international comparison using data from Italy, Japan, and the UK. We
chose these countries in part because the forecast data go back as far as 1990 and in part
because the survey long-run forecasts show some noticeable time variation.

For the US, we use three different measures of quarterly inflation (πt in the model):
i) inflation based on the consumer price index (CPI inflation), ii) inflation based on the
consumer price index excluding food and energy (core CPI inflation), and iii) inflation
based on the price index for personal consumption expenditures (PCE inflation). Inflation
rates are computed as annualized log percent changes (πt = 400 ln (Pt/Pt−1) where Pt is
a price index). The CPI has the advantage of being widely familiar to the public, and
for much of our sample, the available inflation expectations data refer to it. However,
changes over time in the methodology used to construct the CPI — such as the 1983
change in the treatment of housing costs to use rental equivalence — may create structural
instabilities, because the historical data are not revised to reflect methodology changes.
One reason we also consider PCE inflation is that its historical data has been revised to
reflect methodology changes, reducing concerns with instabilities created by methodology
changes. Another reason is that the Federal Reserve’s preferred inflation measure is PCE
inflation; its longer-run inflation objective is stated in terms of PCE inflation.

Reflecting data availability, our results draw on a few different sources of long-run
inflation expectations. In most of our results for the U.S., we use the Blue Chip Consensus
(the mean of respondents’ forecasts, from Blue Chip Economic Indicators) to measure
long-run inflation expectations (zt in the model). Blue Chip has been publishing long run
(6-10 year) forecasts of CPI inflation and GNP or GDP deflator inflation since 1979 in the
latter case and 1983 in the former case. To extend the CPI forecast survey back to 1979,
we fill in data for 1979 to 1983 using deflator forecasts from Blue Chip.11 The forecasts
are only published twice a year; we construct quarterly values using interpolation.

Partly for the purpose of using a longer sample, in some of our results we instead
use the long-run inflation expectation series included (as the series denoted PTR) in
the Federal Reserve Board of Governor’s FRB/US econometric model. Defined in CPI
terms, the PTR series in the Board’s model splices (1) econometric estimates of inflation
expectations from Kozicki and Tinsley (2001) early in the sample to (2) 5- to 10-year-
ahead survey measures compiled by Richard Hoey to (3) 1- to 10-year ahead expectations
from the Survey of Professional Forecasters.12 Defined in the PCE terms actually used
in the FRB/US model, the series uses the same sources, but from 1960 through 2006, the
source data are adjusted (by Board staff, for use in the FRB/US model) to a PCE basis
by subtracting 50 basis points from the inflation expectations measured in CPI terms.
Although some readers may be concerned by the econometric component to the PTR
time series and the approximations used to translate from CPI to PCE terms, we only
use the series in a relatively small set of results.

11For the next several years following 1983, Blue Chip’s long-run forecasts of CPI and GDP inflation
are very similar.

12Surveys of professional forecasters have long included projections of CPI inflation or the GNP/GDP
price deflator/price index, but only recently has any survey included PCE inflation. The Blue Chip con-
sensus tracks expectations of inflation in both the CPI and GDP price index. The Survey of Professional
Forecasters tracks expectations of CPI inflation and, since 2007, PCE inflation.
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We present results for three combinations of inflation with corresponding inflation
expectations: i) CPI inflation plus Blue Chip forecasts, ii) core CPI inflation plus Blue
Chip forecasts and ii) PCE inflation plus PTR long run forecasts,. This set addresses
robustness to different inflation measures and to different measures of inflation expec-
tations.13 In results based on Blue Chip expectations, the estimation sample period is
1980:Q1 to 2016:Q1. In results based on the PTR measures of inflation expectations, we
estimate the model using data from 1960:Q2 to 2016:Q1.

As detailed above, one model we consider as a robustness check includes a short-run
inflation expectation (in addition to the long-run expectation). We measure the short-run
expectation with the three-quarter ahead forecast of CPI inflation from the Blue Chip
Consensus. Out of concern for data consistency, we only estimate this model with CPI
inflation and the long-run expectation from Blue Chip.

A second model we consider as a robustness check includes economic activity as a
predictor of inflation with a time-varying coefficient. In this model, we follow common
practice (e.g., Morley, Piger, and Rasche 2015, Stella and Stock 2013) and define the rele-
vant activity variable as an unemployment gap, defined as the actual unemployment rate
less the Congressional Budget Office’s estimate of the natural rate of unemployment.14

For our international analysis, we use CPI inflation rates and long-run forecasts of
CPI inflation from Consensus Economics (hereafter, CE). The exception is the UK, for
which we use the retail price index excluding indirect taxes (RPI) and the CE forecasts
of RPI inflation. We obtained CPI data from Haver Analytics and the UK’s RPI from
the website of the Office of National Statistics. The long-run forecasts obtained from
CE are conceptually comparable to the U.S. forecasts published by Blue Chip; they are
projections of average inflation 6 to 10 years ahead, reported as the average across private
forecasters who participate in the survey. Since mid-2014, the CE forecasts have been
published on a quarterly basis (in the first month of each quarter). Prior to that, the
forecasts were only published twice a year (April and October), and we construct quarterly
values using interpolation. For Italy, Japan, and the UK, data runs from 1990:Q2 through
2016:Q2. In light of the shorter samples of expectations data available for these other
countries, in the international assessment we only report full-sample estimates and omit
out-of-sample forecast comparisons.

4 Empirical Results using US Data

In this section, we present results for three different combinations of inflation and ex-
pectations measures for the U.S. In addition to our baseline model, we present selected
results from the six other models detailed above. The primary purpose of this paper is to
develop an appropriate model for investigating the relationship between inflation, trend

13An earlier version of this paper, released as Federal Reserve Bank of Cleveland Working Paper 15-20,
contains results for a wider range of combinations, including for GDP deflator inflation.

14Following studies such as Rudd and Peneva (2015), we use the measure the CBO refers to as its
short-term estimate of the natural rate, which incorporates a temporary, substantial rise in the natural
rate in the period following the start of the Great Recession, attributable to structural factors such as
extended unemployment insurance benefits.
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inflation and inflation expectations. However, it is also of interest to see whether it fore-
casts better than plausible alternatives. To this end, we carry out a pseudo out-of-sample
forecasting exercise. In our results based on long-run expectations from Blue Chip, the
evaluation sample begins with 1995Q1. In results based on the PTR measure of inflation
expectations, for which a longer history is available, the forecast evaluation period begins
in 1975Q1.15

Empirical results are mostly presented using figures. In each case, the first set of
figures focusses on M1. It plots posterior means (along with an interval estimate) of
all the latent variables in the model (i.e. π∗t , bt, λv,t, λn,t, d0t, d1t). The figure for π∗t also
plots actual inflation (πt) along with long-run forecasts taken from the surveys (zt).
The next set of figures presents comparisons of these latent variables across our models.
For the baseline case of CPI inflation with long-run inflation expectations measured by
6-10 year ahead forecasts of Blue Chip (for brevity, we omit the same for the other
data combinations), we include some additional charts to compare the precision of trend
estimates and pseudo-real time estimates of trend. Finally, tables of marginal likelihoods
and measures of forecast performance are provided. For the latter, we present root mean
squared forecast errors (RMSFEs) and sums of log predictive likelihoods, both taken
relative to the UCSV-AR model (M4). When computing forecasts for model M7, we
assume an AR(4) model for the unemployment gap.

4.1 Results Using CPI Inflation and Blue Chip Forecasts

Figure 1 presents estimates of π∗t , bt, λv,t, λn,t, d0t and d1t for our baseline model. Trend
inflation estimates can be seen to be much smoother than actual inflation. In a general
sense, they track long-run survey-based forecasts fairly well. However, trend inflation
lies consistently below survey forecasts and this difference is large in a statistical sense.
That is, zt consistently lies above the upper bound of the credible interval for π∗t and the
professionals were forecasting long run inflation to be somewhat higher than our estimate
of trend inflation. A finding that the professionals’ forecasts are often slightly above our
estimates of trend inflation can also be seen in the results for d0t and d1t. Remember
that d0t = 0 and d1t = 1 implies long run forecasts are unbiased estimates of trend
inflation. In Figure 1, most of the posterior probability of d0t lies in the positive region
and (with high posterior probability) d1t is above one, particularly early in our sample.
These values jointly imply that our trend inflation estimates are slightly below those of
the professionals.

Estimates of bt tend to be consistent with a fair amount of inflation persistence (at
roughly 0.5), with slight evidence of some decrease over time. There is also strong evidence
of stochastic volatility, both in the inflation equation and in the one for trend inflation.
This is consistent with the findings of Stock and Watson (2007) in their univariate model
for inflation. It is interesting to note that, as in Stock and Watson (2007), both types
of stochastic volatility were high around 1980 and fell subsequently. The recent financial
crisis was associated with a large increase in the volatility of shocks to the inflation gap,

15We repeated the analysis with a shorter forecast evaluation period beginning in 1985Q1 (after the
Great Moderation) and found results to be qualitatively similar.
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Figure 1: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (CPI+Blue Chip). Shaded
bands are 16th-84th percentiles
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but no increase in the volatility of shocks to trend inflation. Insofar as low volatility in
trend inflation reflects a firm anchoring of inflation expectations, then our results suggest
the Fed has succeeded in anchoring inflation expectations since the 1980s and that these
expectations were not shaken by the financial crisis.

Figure 2 compares parameter and trend inflation estimates across models (except for
a trend estimate from the Faust-Wright model (M5), which does not produce such an
estimate). These results indicate that, relative to our baseline model, estimates are only
modestly changed (early in the sample) by the addition of short-run inflation expectations
(M6) or an unemployment gap (M7). Restricting the baseline model by making the
coefficients d0 and d1 of the inflation expectations equation constant or restricting them
to specific values (0 and 1, respectively) has somewhat more noticeable effects on the
time-varying volatility to innovations to trend inflation (λn,t), the coefficients d0 and d1,
and trend inflation. For example, restricting d0 and d1 to be constant in model M2 lowers
the estimate of the slope d1 from more than 1 in M1 to a little more than 0.8 in M2 and
raises the intercept d0 from 0.3 or less in model M1 to about 0.8 in model M2. For both
M2 and M3, the estimated trend is well above the estimate from model M1 for about the
first 10 years of the sample. Perhaps not surprisingly, with d0 and d1 restricted to 0 and
1, respectively, the trend estimate from model M3 is essentially the same as the survey
expectation zt (so much so as to obscure the line for zt in the top panel’s chart). Broadly,
the estimates from the various models covered in Figure 2 increase the weight of evidence
against d0t = 0 and d1t = 1. For example, M6 and M7 roughly line up with model 1 in
their estimates of these time-varying coefficients, with d0 above 0 and d1 above 1. The
estimates of model M2 shows that, even with a constant coefficient model, estimates of
these coefficients differ from the (0,1) case.

Dropping long-run inflation expectations out of the model, as does the UCSV-AR
specification of M4, creates larger differences in estimates compared to the baseline model.
The estimate of the time-varying volatility to trend inflation (λn,t) is noticeably higher
for M4 than the baseline specification. In addition, the estimate of trend inflation from
M4 differs from the baseline in some important respects. As evident from the top row
of Figure 2, M4’s trend inflation estimate tends to be more variable and substantially
lower around 1980 than any of the other approaches which include long-run inflation
expectations. In addition, as shown in Figure 3, the credible set around the estimate of
trend inflation is much narrower with M1 than M4. Using a survey-based measure of
inflation expectations to inform the estimate greatly increases the precision of the trend
estimate.

Up to this point, we have focused on full-sample estimates of the models and smoothed
estimates of trend. However, models like these are sometimes used in pseudo-real time
to regularly assess inflation trends. Hence, it is also of interest to compare historical
time series of pseudo-real time estimates of trend inflation. This is done in Figure 4.
Starting in 1990:Q1, in each quarter t, we use the historical data up through that point
in time to estimate the models and their inflation trends, saving the trend as of period
t as the pseudo-real time estimate, and repeating the estimation at each subsequent
quarter. As expected, these pseudo-real time trend estimates are noisier than their full-
sample smoothed counterparts. The estimates from models M1, M2, M3, and M6 are
broadly similar to one another, although there certainly can be sizable differences across
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Figure 2: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different models
(CPI+Blue Chip)
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models. The estimate from M7 (which includes short-run expectations as well as long-run
expectations) has a similar contour to these other models, but tends to be higher. The
estimate from M4 is much more noticeably different from the other estimates, particularly
in its much higher volatility. In pseudo-real time estimates, including the survey-based
measure of long-run inflation expectations greatly reduces the variability of trend inflation
estimates.
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Figure 4: Posterior Means of psuedo-real time estimates of π∗t for M1 (CPI+Blue Chip).

Overall, these findings support the view that including information from survey fore-
casts and adding time-variation in parameters is useful in helping refine estimates of trend
inflation, in dimensions including the capture of features that seem to exist in estimates of
our relatively flexible model, the precision of trend estimates ex post, and the variability
of pseudo-real time estimates of trend inflation. But simply assuming survey forecasts to
be unbiased measures of trend inflation appears unduly restrictive.

To assess the ability of our model to fit inflation data, Table 1 provides marginal
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Table 1: Log marginal likelihood estimates (CPI + Blue Chip)

M1 M2 M3 M4 M5 M6 M7
-277.29 -278.60 -278.60 -284.41 -279.33 -275.33 -283.10

Table 2: RMSFEs and log predictive likelihood for forecasting CPI inflation relative to
UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 0.97 0.94 0.88 0.90 0.90 0.89 0.90
M2 0.98 0.95 0.89 0.88 0.87 0.84 0.84
M3 0.98 0.95 0.90 0.92 0.94 0.93 0.94
M5 0.98 0.97 0.92 0.92 0.93 0.93 0.94
M6 0.97 0.94 0.88 0.90 0.89 0.88 0.88
M7 0.98 0.95 0.91 0.91 0.91 0.90 0.91

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 2.86 4.40 7.84 10.71 14.10 17.52 18.70
M2 2.34 4.61 8.67 12.64 17.56 20.47 20.68
M3 1.08 2.33 5.52 8.44 10.54 13.35 14.24
M5 1.43 2.82 6.96 10.54 11.67 15.35 14.78
M6 2.44 3.85 7.98 10.77 15.84 18.57 20.34
M7 0.78 1.10 3.83 10.10 14.60 16.80 17.95

likelihoods for the seven models under consideration.16 We start by comparing our base-
line model to the UCSV-AR (M4) and Faust-Wright models (M5) and then consider the
effects on model fit of restrictions on the d coefficients and of model extensions. By the
classic recommendations of Jeffreys for interpreting Bayes factors (see, e.g., page 777 of
Kass and Raftery, 1995), the evidence in favor of our model against models M4 and M5 is
strong (decisive for M4 and substantial for M5). Restricting the d coefficients in models
M2 and M3 modestly reduces model fit compared to the baseline M1. By the standards of
Jeffreys, the evidence in favor of our time-varying d coefficients over constant coefficients
is substantial, but not strong. Finally, extending our model to include short-horizon fore-
casts yields a substantial improvement in model fit, whereas extending it to include the
unemployment gap makes model fit much worse.

To assess the value of long-run inflation expectations for forecasting future inflation,
Table 2 reports the accuracy of point and density forecasts, as ratios of RMSFEs of each
model relative to the UCSV-AR specification (M4) and as differences in log predictive
likelihoods relative to the M4 model baseline (a RMSFE ratio less than 1 denotes im-
provement on the baseline, as does a positive relative log predictive likelihood). All of
the models that include long-run inflation expectations improve on the accuracy of the

16The Technical Appendix details the computation of the marginal likelihood. These are constructed
using the predictive likelihood associated solely with inflation so as to ensure comparability across models.
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Table 3: Log marginal likelihood estimates (core CPI + Blue Chip)

M1 M2 M3 M4 M5 M7
-148.70 -146.91 -151.14 -154.67 -152.26 -151.98

UCSV-AR model. At short horizons, the gains are admittedly small to modest; practi-
cally speaking, there is little to distinguish the models in forecast accuracy. At longer
horizons, the gains increase to as much as about 16 percent for point forecasts and more
than 20 points in log predictive likelihood. The more restricted models M3 (which sets d0
to 0 and d1 to 1 for all time) and M5 (the Faust-Wright model) are slightly less accurate
than the less restrictive models M1 and M6, but meaningfully so.

4.2 Results Using Core CPI inflation and Blue Chip Forecasts

Results using core CPI inflation, given in Figures 5 and 6 and Tables 3 and 4, are broadly
similar to those using CPI inflation. In particular, we are still finding that our estimate of
trend inflation lies below zt and that d0t and d1t differ from the (0,1) values which imply
that professionals are producing unbiased forecasts of trend inflation. However, there are
some interesting differences. There is less evidence of time-variation in d0t and d1t than
with CPI inflation. The UCSV-AR model produces trend inflation estimates which are
more erratic than those produced using models which incorporate inflation expectations
(although we omit the results in the interest of brevity, this model also yields trends
estimates that are less precise and much more variable in pseudo-real time). Another
point worth noting is that the volatilities, λv,t, λn,t, are large in 1980 but both continually
fall over the sample period. This contrasts with the CPI inflation results where λv,t shoots
up at the time of the financial crisis.

In terms of model fit as captured by the marginal likelihoods of Table 3, our baseline
model (M1) yields considerable gains relative to the UCSV-AR (M4) and Faust-Wright
(M5) models. In contrast to the results for headline CPI inflation, for core CPI inflation,
restricting the d0 and d1 coefficients to be constants improves model fit, yielding the best-
fitting model. However, restricting these coefficients to 0 and 1, respectively, significantly
harms model fit. These findings indicate that survey-based long-run inflation expectations
are closely related to the trend in core CPI inflation but not an unbiased measure. Once
again, extending the model to include the unemployment gap makes model fit much
worse.

The out-of-sample forecasting results in Table 4 show that, with core CPI inflation, not
all of the models incorporating long-run inflation expectations improve on the accuracy
of the UCSV-AR model. Models M3 and M5 — the models that equate the long-run
expectation with trend inflation — are generally less accurate than the UCSV-AR model,
although in some cases only by small margins. Our proposed model yields forecasts
slightly more accurate than those of the UCSV-AR baseline. Restricting the d0 and d1
coefficients to be constant as in model M2 yields more sizable improvements in forecast
accuracy, especially at longer horizons. For core CPI inflation, model M2 forecasts best.
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Figure 5: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (core CPI+Blue Chip)
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Table 4: RMSFEs and log predictive likelihood for forecasting core CPI inflation relative
to UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 0.99 0.99 0.98 0.95 0.94 0.95 0.95
M2 0.97 0.94 0.88 0.79 0.76 0.78 0.79
M3 1.04 1.08 1.12 1.11 1.06 1.04 1.00
M5 1.04 1.10 1.16 1.14 1.06 1.04 1.00
M7 0.98 0.95 0.95 0.98 1.06 1.07 1.07

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 1.31 0.74 0.52 5.69 11.24 14.05 14.43
M2 2.95 4.24 8.52 22.13 31.52 33.70 33.07
M3 -3.04 -6.98 -12.70 -17.75 -15.87 -10.56 -8.09
M5 -3.21 -9.28 -18.66 -28.61 -29.65 -27.88 -27.99
M7 1.49 2.63 5.50 6.37 0.59 3.46 3.17

4.3 Results Using PCE Inflation and PTR Forecasts

In this sub-section, the inflation measure is PCE inflation, and the long-run inflation
expectations measure is PTR. For this data combination, our sample goes back to 1960
and so we are able to examine the performance of our model over a longer time period.
Figures 7 and 8 and Tables 5 and 6 provide the results.

For much of the sample, especially in the late 1970s and early 1980s, we are again
finding strong evidence that our estimate of trend inflation lies modestly below the pro-
fessionals’ long-run forecast. Our estimates of d0 and d1 are relatively high from the late
1970s through roughly 1995, with d1 trending up through 1980 and then down for some
years. Post-1980, results for λv,t and λn,t are similar to those for CPI inflation. Pre-1980,
λv,t (the volatility in the inflation gap equation) follows the expected pattern in the mid-
to late- 1970s before falling with the Great Moderation. But it is interesting to note that
this pattern is not replicated for λn,t (the volatility in trend inflation), which slowly rises
throughout the 1970s before reaching a peak in the early 1980s and falling thereafter.

Turning to our other models, we are again finding that the UCSV-AR model is pro-
ducing more erratic estimates of trend inflation (a pattern more evident in the 1960-2016
sample used in these results than in the 1980-2016 sample of our CPI results).

The marginal likelihoods of Table 5 yield some differences with respect to the baseline
results we obtained with CPI inflation measures. In model fit, our baseline model (M1)
continues to yield considerable gains relative to the Faust-Wright (M5) model, but not
relative to the UCSV-AR (M4) specification. With PCE inflation, restricting the d0
and d1 to be constants slightly improves model fit, such that M2 and M3 are not really
different from the UCSV-AR (M4) specification in model fit. Once again, extending the
model to include the unemployment gap makes model fit much worse.

In Table 6’s out-of-sample forecasting results for PCE inflation, the forecast perfor-
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Table 5: Log marginal likelihood estimates (PCE+PTR)

M1 M2 M3 M4 M5 M7
-367.28 -366.26 -366.80 -366.35 -372.61 -373.89

Table 6: RMSFEs and log predictive likelihood for forecasting PCE inflation relative to
UCSV-AR

Relative RMSFE
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 0.98 0.97 0.96 0.98 0.99 1.01 1.06
M2 1.01 1.02 1.04 1.07 1.09 1.11 1.18
M3 0.98 0.98 0.95 0.96 0.96 0.98 1.02
M5 1.01 1.03 1.00 0.96 0.96 0.98 1.02
M7 0.99 0.99 0.98 0.99 1.00 1.03 1.07

Relative log predictive likelihood
1Q 2Q 4Q 8Q 12Q 16Q 20Q

M1 1.45 2.73 4.25 1.23 8.02 5.61 0.32
M2 0.41 0.53 1.91 3.12 8.11 6.22 5.06
M3 0.80 1.88 3.88 4.35 11.07 10.57 8.25
M5 -2.00 -0.81 2.56 1.54 4.33 2.46 -2.07
M7 -1.15 -1.85 -0.15 2.17 5.42 0.67 -4.44

mance of models incorporating long-run inflation expectations is broadly similar to the
performance of the UCSV-AR model. Our proposed model M1 often improves on the
accuracy of the baseline model, but only slightly. Restricting the model’s d0 and d1 co-
efficients to be constant at 0 and 1, respectively, very slightly improves the accuracy of
the model, but not to a notable degree.

5 An International Comparison

The CE data allows us to use methods developed in this paper with survey forecasts
constructed in an internationally comparable way. In this section, we present results
for Italy, Japan, and the UK using the CE long-run forecasts as measures of expected
inflation. In the interest of brevity, we focus on models M1 through M5 (i.e. the models
which use only data on inflation and a long run survey forecast). Note that these data sets
have a shorter sample span, so our estimates begin in 1990. Since the period from 1990
to the Great Recession and financial crisis was a relatively stable time in most advanced
economies, in this section we are missing some of the variability which was present in the
US data sets of the preceding section.

Figures 9, 10, and 11 provide estimates of our baseline model (M1) for Italy, Japan,
and the UK, respectively. Figures 12, 13, and 14 provide comparisons of estimates across
models M1 through M5, for Italy, Japan, and the UK, respectively.

Consider first the estimates of trend inflation. In the preceding section, we found our
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Figure 7: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for M1 (PCE+PTR)
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model produced estimates which were consistently slightly less than the professionals’
forecasts. This finding also holds true for Japan (Figure 10). For the UK it holds much
of the time. But for Italy, our estimate of trend inflation is very close to the professionals’
survey (Figure 11). In the U.S. results, we also found the trend estimates from the UCSV-
AR to be more erratic than those from our baseline model. In the shorter sample for
other countries, this finding same applies to Italy (Figure 12) but not Japan (Figure 13)
or the UK (Figure 14).

With the US data, we found considerable evidence against the d0t = 0 and d1t = 1
restrictions. This also holds true in our estimates for Japan and the UK but not Italy.
However, the way each country departs from this restriction is a bit different. For Japan
(Figure 10), there is support for the restriction d1t = 1, but d0t is positive and quite large,
indicating that professionals’ forecasts are consistently above trend inflation. A similar
pattern holds in the UK (Figure 11), but only from the late 1990s until the financial crisis.
There is substantial time variation in the UK estimates of d0t and d1t. All in all, we are
finding a range of patterns but, apart from Italy, we are never finding strong support that
the long run surveys provide unbiased estimates of trend inflation.

With regards to stochastic volatility, we are finding somewhat less evidence of its
presence in the shorter samples for Italy, Japan, and the UK than in the longer samples
of U.S. data. As noted above, with our sample for the CPI in the U.S., λv,t (inflation gap
volatility) and λn,t (trend inflation volatility) trended down in the 1980s and then were
little-changed, with the notable exception of a spike in λv,t around the Great Recession.
With the other countries, there is some decline in λn,t in the 1990s and some time variation
in λv,t for Japan, but otherwise, volatility is relatively stable (see Figures 9-11). It is also
interesting to note that, especially for Italy and the UK, the estimates of λn,t are much
higher for the UCSV-AR model (M4) than our baseline model (M1), which explains why
this model produces more erratic estimates of trend inflation.
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Figure 9: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for Italy. Shaded bands are
16th-84th percentiles
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Figure 10: Posterior Means of π∗t , bt, λv,t, λn,t, d0t and d1t for Japan. Shaded bands are
16th-84th percentiles
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Figure 13: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models, for Japan

29



1990 2000 2010
-2

0

2

4

6
π

*

t
z

t

M1

M2

M3

1990 2000 2010
-2

0

2

4

6
π

*

t
z

t

M4

1990 2000 2010

0

0.5

1

1.5

2
d

0t
M1

M2

M3

1990 2000 2010
0.5

1

1.5
d

1t
M1

M2

M3

1990 2000 2010
0

2

4

6
λ

v,t
M1

M2

M3

1990 2000 2010
0

2

4

6
λ

v,t
M4

M5

1990 2000 2010
0

0.1

0.2

0.3
λ

n,t
M1

M2

M3

1990 2000 2010
0

0.1

0.2

0.3
λ

n,t
M4

1990 2000 2010
0

0.5

1
b

t
M1

M2

M3

1990 2000 2010
0

0.5

1
b

t
M4

Figure 14: Comparison of posterior means of π∗t , bt, λv,t, λn,t, d0t and d1t for different
models, for the UK

30



Table 7: Log marginal likelihood estimates, other countries

country M1 M2 M3 M4 M5
Italy -134.34 -134.96 -134.02 -137.92 –135.14
Japan -196.79 -193.74 -202.53 -196.72 -203.10
UK -164.79 -165.88 -165.41 -166.56 -167.37

Table 7 presents marginal likelihood comparisons for the models applied to each coun-
try. In all cases, our proposed model fits inflation data as well as or better than the
UCSV-AR (M4) and Faust-Wright (M5) models. For Italy, M1 is significantly better
than M4 but only modestly better than M5. For Japan, M1 is significantly better than
M5 but about the same in fit as model M1. For the UK, M1 fits the data significantly
better than both models M4 and M5. Across countries, the evidence regarding restric-
tions on the d0 and d1 coefficients is mixed. For Italy, the restrictions of models M2 and
M3 neither harm nor help model fit. For Japan, imposing 0,1 restrictions significantly
reduces model fit, but making the coefficients constants to be estimated significantly im-
proves fit, making M2 the best-fitting specification. For the UK, imposing the restrictions
of models M2 and M3 slightly reduce model fit.

On balance, we interpret these international results as indicating that our model,
which allows information about professionals’ forecasts to help estimate trend inflation
without imposing the restrictions that effectively equates such forecasts with trend infla-
tion, is working successfully in a variety of countries with different inflationary experi-
ences. Put another way, the evidence points to the value of using long-run expectations
to help estimate trend inflation without imposing restrictions (constant coefficients of 0
and 1 in our model) that effectively equate the two.

6 Discussion

We have proposed our new model for several reasons. First, as a way of improving
estimates of trend inflation by drawing strength from surveys of professional forecasters.
Second, as a way of investigating whether these surveys are unbiased in the sense used
in this paper (i.e. that they provide unbiased estimates of an econometric estimate of
trend inflation or, equivalently, that d0t = 0 and d1t = 1). Third, as a model that
might improve on existing specifications in fitting historical inflation data. Finally, as
a simple model that might improve inflation forecasts over other simple models such as
UCSV. Recently, there have been several influential papers which attempt to address the
question of why survey-based forecasts might be biased. This is not the main focus of
our paper, but some short discussion of this issue is warranted.

Our model allows for the possibility that survey expectations may become discon-
nected from the longer-run trend in inflation. That disconnection could take the relatively
modest form of a systematic bias, or it could take the form of a more dramatic departure
from rational expectations, with the survey expectation showing little connection to the
longer-run trend in inflation. Studies such as Coibion and Gorodnichenko (2015) have
presented evidence that survey forecasts depart from rationality in that they are subject
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to sluggish adjustment consistent with information rigidities. Mertens and Nason (2015)
develop a joint model of inflation and inflation forecasts that permits time variation in the
strength of the information rigidities. In light of this evidence, we have used our sample of
Blue Chip forecasts of CPI inflation to produce estimates of the Coibion-Gorodnichenko
stickiness regression. In this data, these estimates do not point to strong evidence of
such information rigidities (however, this does not rule out bias or other manifestations
of irrationality in the forecasts).17 Although this evidence can be seen as supporting our
development of a model that does not impose parametric restrictions consistent with the
Coibion-Gorodnichenko framework, our model can be seen as incorporating features that
could capture the effects of information rigidities in a flexible way. In broad terms, our
model can be seen as similar to that of Mertens and Nason (2015); the differences reflect
a deliberate choice to impose fewer parametric restrictions and permit greater flexibility,
particularly in the representation of survey forecasts of inflation. More specifically, if
we abstract from time-varying parameters and volatilities for simplicity, our process for
actual inflation is quite similar to that in Mertens-Nason. In the process for the survey
forecast (recall also that we differ in our specification of the forecast horizon), Mertens-
Nason incorporate a hierarchical structure with an additional latent state for the inflation
forecast on which the observed survey forecast depends, with the latent state incorporat-
ing autoregressive dynamics and trend inflation, whereas we instead relate the observed
survey forecast to a time-varying intercept, trend inflation with a time-varying coeffi-
cient, and an MA error term. To the extent the survey forecasts feature stickiness, this
stickiness can be subsumed in our time-varying intercept and MA error term.

7 Summary and Conclusion

In this paper, we have developed a bivariate model of inflation and inflation expecta-
tions that incorporates empirically-important features such as time-varying parameters
and stochastic volatility. In a broad sense, we have used our model to investigate the
relationship between these two variables. In a narrower sense, we have investigated the
degree to which survey-based long-run inflation forecasts can be used to inform estimates
of trend inflation (e.g., by increasing precision), improve the fit of historical inflation
data, and improve the accuracy of out-of-sample forecasts. In an extensive empirical
exercise involving three combinations of measures of US inflation and long-run inflation
forecasts, we find a consistent story: Long-run inflation forecasts do provide useful ad-
ditional information in informing estimates of trend inflation and in improving the fit
of inflation models. However, the forecasts themselves cannot simply be equated with
trend inflation. In out-of-sample forecasting, our model yields point and density forecasts
that are at least as good as those from other models that have been found successful in
the inflation forecasting literature. In estimates for Italy, Japan, and the UK, we find a
similar story in most cases. However, for Italy we find simply equating trend inflation
with long run forecasts by the professionals’ may be sufficient. However, it is reassuring
that we are uncovering this result in the context of a flexible econometric model instead

17We ran the Coibion-Gorodnichenko regression using both long-horizon and short-horizon Blue Chip
forecasts of CPI inflation over various samples.
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of simply imposing it a priori.
The history captured by our estimates indicates the distinction between trend in-

flation and long-run inflation expectations captured by surveys in the US is practically
important. For example, as noted in the introduction, for most of the period since 2008,
inflation in the PCE price index has run below the Federal Reserve’s longer-run inflation
objective of 2 percent. Over the past couple of years, inflation has declined to very low
levels. Yet, for several years before the recession that began in 2007, inflation ran steadily
above target. Some estimates of trend inflation based entirely on inflation — as in the
UCSV specification of Stock and Watson (2007) — have moved around with inflation,
rising in the early to mid-2000s and declining markedly as of late 2014. At the other
extreme, long-run inflation expectations measured from the Survey of Professional Fore-
casters have remained steady around 2 percent (with occasional up-ticks and down-ticks).
Drawing on the information in both inflation and the survey’s long-run expectation, our
model’s estimate of trend is much smoother than the estimate from a univariate UCSV
specification, implying the trend to be stable in the face of both the rise of inflation in the
years before the recession and the fall since the recession. In fact, our model estimates
show trend inflation to be even more stable than the survey expectation (containing a
little less noise than the survey). However, in keeping with a historical bias in the survey
forecast, our estimate of trend inflation has for some time been stable, slightly below the
survey expectation.
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Technical Appendix
In this appendix, we specify the prior and MCMC algorithm used in this paper for

our baseline model. Although we omit details in the interest of brevity, for the other
models, we use suitably adjusted versions of this prior and algorithm. Note that, for the
model M2 that restricts the d0 and d1 coefficients to be constant over time, we use prior
means of 0 and 1, respectively, with a prior variance of 1 for d0 and 0.5 for d1.

The model is given in (3), (4), (5), (6), (7), (8), (9) and (10). We initialize the
state equations (5), (7), (6) and (10) by π∗1 ∼ N(π∗0, λn,1Vπ∗), b1 ∼ N(b0, Vb), di1 ∼
N(µdi, σ

2
di/(1 − ρ2di)), i = 0, 1, and log(λi,1) ∼ N(log(λi,0), Vλi), i = v, n, with λi,0 = 1,

b0 = π∗0 = 0 and Vλi = Vb = Vπ∗ = 100. These are relatively non-informative choices.
For later reference, let π = (π1, . . . , πT )′ and d = (d01, d11, . . . , d0T , d1T )′, and similarly

define z, π∗, b, λv and λn. In addition, let θ denote the model parameters, i.e., θ =
(ψ, µd0, µd1, ρd0, ρd1, σ

2
d0, σ

2
d1, σ

2
b , σ

2
z, φv, φn)′.

We assume independent priors for elements of the parameter vector θ which are proper
and weakly informative. The priors for µdi and ρdi are:

µd0 ∼ N(a0, Vµ), µd1 ∼ N(a1, Vµ), ρdi ∼ TN(c1,c2)(a2, Vρ),

where the TN(c1,c2)(µ, σ) denotes theN(µ, σ) distribution truncated to the interval (c1, c2),
and we set a0 = 0, a1 = 1, a2 = 0.95, Vµ = 0.12 and Vρ = 0.12.18 These choices imply
relatively informative priors centered at the values which imply trend inflation is equal
to long-run inflation forecasts (apart from a mean zero error). For the MA(1) coefficient,
we consider the relatively non-informative prior which restricts the MA process to be
invertible: ψ ∼ TN(−1,1)(0, Vψ) with Vψ = 0.252. Finally, we assume independent inverse
gamma priors for the variance parameters. In particular, the degree of freedom parame-
ters are all set to the relatively non-informative value of 5, and the scale parameters are
set such that E(σ2

d0) = E(σ2
w) = E(φv) = E(φn) = 0.01 and E(σ2

d1) = E(σ2
b) = 0.001.

These values are chosen to reflect the desired smoothness of the corresponding state
transition. For example, the prior mean for σ2

d0 implies that with high probability the
difference between consecutive d0t lies within the values −0.2 and 0.2.

To estimate the model in (3), (4), (5), (6), (7), (8), (9) and (10), we extend the MCMC
sampler developed in Chan, Koop and Potter (2013) which was used for a univariate
bounded inflation trend model. Moreover, we also incorporate the sampler in Chan (2013)
for handling the MA innovations with stochastic volatility. Specifically, we sequentially
draw from the following densities:

1. p(π∗ |Data, b, d, λv, λn, θ);

2. p(b |Data, π∗, d, λv, λn, θ);

3. p(d |Data, π∗, b, λv, λn, θ);

4. p(λv, λn |Data, π∗, b, d, θ);

5. p(µd0, µd1 |Data, π∗, b, d, λv, λn, θ−{µd0,µd1});
18For M2, the constant coefficient version of our model, we set Vµ = 0.52 and Vρ = 0.52.

36



6. p(σ2
d0, σ

2
d1 |Data, π∗, b, d, λv, λn, θ−{σ2

d0,σ
2
d1});

7. p(ρd0, ρd1 |Data, π∗, b, d, λv, λn, θ−{ρd0,ρd1});

8. p(ψ |Data, π∗, b, d, λv, λn, θ−{ψ});

9. p(σ2
b , σ

2
z, φv, φn |Data, π∗, b, d, λv, λn, θ−{σ2

b ,σ
2
z ,φv ,φn}).

Step 1: To implement Step 1, note that information about π∗ comes from three
sources: the two measurement equations (3) and (4), and the state equation (5). We
derive an expression for each component in turn. First, write (3) as

Hbπ = Hbπ
∗ + α̃π∗ + v, v ∼ N(0,Λv),

where α̃π∗ = (b1(π0 − π∗0), 0, . . . , 0)′, Λv = diag(λv,1, . . . , λv,T ) and

Hb =


1 0 0 · · · 0
−b2 1 0 · · · 0

0 −b3 1 · · · 0
...

. . .
...

0 0 · · · −bT 1

 .

Since |Hb| = 1 for any b, Hb is invertible. Therefore, we have

(π |π∗, b, λv) ∼ N(π∗ + απ∗ , (H ′bΛ
−1
v Hb)

−1),

with log density

log p(π | π∗, b, λv) ∝ −
1

2
(π − π∗ − απ∗)′H ′bΛ

−1
v Hb(π − π∗ − απ∗), (17)

where απ∗ = H−1b α̃π∗ . Note that Hb is a band matrix and απ∗ can be obtained quickly
by solving the band system Hbx = α̃π∗ for x without computing the inverse H−1b .

The second component comes from (4) which can be written as:

z = d0 +Xπ∗π∗ +Hψεz, εz ∼ N(0, σ2
wIT ),

where d0 = (d01, . . . , d0T )′, Xπ∗ = diag(d11, . . . , d1T ) and

Hψ =


1 0 0 · · · 0
ψ 1 0 · · · 0
0 ψ 1 · · · 0
...

. . . . . .
...

0 0 · · · ψ 1

 .

Thus, ignoring any terms not involving π∗, we have

log p(z | π∗, d, σ2
w) ∝ − 1

2σ2
w

(z − d0 −Xπ∗π∗)′(HψHψ)′−1(z − d0 −Xπ∗π∗),

= − 1

2σ2
w

(z̃ − X̃π∗π∗)′(z̃ − X̃π∗π∗), (18)
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where z̃ = H−1ψ (z − d0) and X̃π∗ = H−1ψ Xπ∗ . Since Hψ is a band matrix, z̃ can be
computed quickly by solving a linear system of equations without finding the inverse
H−1ψ . The matrix X̃π∗ is lower triangular that is in general not banded. However, most of
the elements away from the main diagonal band are close to zero. In our implementation
we construct a band approximation by replacing all elements below 10−6 with 0. Since
the cut-off point is so small, it has no impact on the results, but it substantially speeds
up the computation.

The third component is contributed by the state equation (5):

log p(π∗ |λn) ∝ −1

2
(π∗ − δπ∗)′H ′Λ−1n H(π∗ − δπ∗), (19)

where H is the T ×T first difference matrix, Λn = diag(λn,1Vπ∗ , λn,2, . . . , λn,T ) and δπ∗ =
H−1(π∗0, 0, . . . , 0)′. Then, combining (17), (18) and (19), we finally obtain

logp(π∗ |Data, b, d, λv, λn, θ)

∝− 1

2
(π − π∗ − απ∗)′H ′−1b vHb(π − π∗ − απ∗)− 1

2σ2
w

(z̃ − X̃π∗π∗)′(z̃ −Xπ∗π∗)

− 1

2
(π∗ − δπ∗)′H ′Λ−1n H(π∗ − δπ∗),

∝− 1

2
(π∗ − π̂∗)′Kπ∗(π∗ − π̂∗),

which is the kernel of the N(π̂∗, K−1π∗ ) distribution, where

Kπ∗ =

(
H ′−1b vHb +

1

σ2
w

X̃ ′π∗X̃π∗ +H ′Λ−1n H

)−1
,

π̂∗ = K−1π∗

(
H ′−1b Hb(π − απ∗) +

1

σ2
w

X̃ ′π∗ z̃ +H ′Λ−1n Hδπ∗

)
.

If we use the band approximation of X̃π∗ as described above, the precision Kπ∗ is also a
band matrix. Then, we use the precision sampler in Chan and Jeliazkov (2009) to sample
π∗ from the conditional distribution (π∗ |Data, b, d, λv, λn, θ).

Step 2: Next, we derive the conditional density p(b |Data, π∗, d, λv, λn, θ). Due to
the inequality restriction 0 < bt < 1, this joint density is non-normal. We first rewrite
(3) as:

π̃ = Xbb+ v, v ∼ N(0,Λv),

where π̃ = (π1 − π∗1, . . . , πT − π∗T )′ and Xb = diag(π0 − π∗0, . . . , πT−1 − π∗T−1). It follows
that the log density of (π | π∗, b, λv) can also be written as follows:

log p(π | π∗, b, λv) ∝ −
1

2
(π̃ −Xbb)

′Λ−1v (π̃ −Xbb), (20)

Next, write (6) as
Hb = δ̃b + εb,
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where δ̃b = (b0, 0, . . . , 0)′ and the elements of εb are independent truncated normal vari-
ables. Note that Pr(0 < b1 < 1) = Φ((1− b0)/

√
Vb)− Φ(b0/

√
Vb) and

Pr(0 < bt < 1) = Φ

(
1− bt−1
σb

)
− Φ

(
−bt−1
σb

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.
Hence, the prior density for b is given by

log p(b |σ2
b) ∝

1

2
(b− δb)′H ′Σ−1b H(b− δb) + gb(b, σ

2
b), (21)

where Σb = diag(Vb, σ
2
b , . . . , σ

2
b), δb = H−1δ̃b and

gb(b, σ
2
b) = −

T∑
t=2

log

(
Φ

(
1− bt−1
σb

)
− Φ

(
−bt−1
σb

))
.

Combining (20) and (21), we obtain

log p(b |Data, π∗, d, λv, λn, θ) ∝ −
1

2
(b− b̂)′K−1b (b− b̂) + gb(b, σ

2
b),

where
Kb =

(
H ′Σ−1b H +X ′bΛ

−1
v Xb

)−1
, τ̂π = K−1b (H ′−1b δ̃b +X ′bΛ

−1
v π̃).

We follow Chan, Koop and Potter (2013) to sample b. Specifically, candidate draws
are first obtained from the N(b̂, K−1b ) distribution using the precision sampler in Chan
and Jeliazkov (2009), and they are accepted or rejected via an acceptance-rejection
Metropolis-Hastings step.

Step 3: To sample from p(d |Data, π∗, b, λv, λn, θ), we first rewrite (4) and (7) as

z = Xdd+Hψεz, εz ∼ N(0, σ2
wIT ),

Hρdd = δ̃d + εd εd ∼ N(0,Σd),

where δ̃d = (µd0, µd1, (1 − ρd0)µd0, (1 − ρd1)µd1, . . . , (1 − ρd0)µd0, (1 − ρd1)µd1)
′, Σd =

diag(σ2
d0/(1− ρ2d0), σ2

d1/(1− ρ2d1), σ2
d0, σ

2
d1, . . . , σ

2
d0, σ

2
d1),

Xd =


1 π∗1 0 0 0 · · · 0
0 0 1 π∗2 0 · · · 0
...

. . .
...

...
0 0 · · · 0 0 1 π∗T

 , Hρd =



1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
−ρd0 0 1 0 0 · · · 0

0 −ρd1 0 1 0 · · · 0
...

. . . . . . . . .
...

0 0 · · · −ρd0 0 1 0
0 0 · · · 0 −ρd1 0 1


.

Using standard linear regression results (see, e.g., Koop, 2003, pp. 60-61), we have
(d |Data, π∗, b, λv, λn, θ) ∼ N(d̂, K−1d ), where

Kd =

(
H ′ρdΣ

−1
d Hρd +

1

σ2
w

X̃ ′dX̃d

)−1
, d̂ = K−1d

(
H ′ρdΣ

−1
d δ̃d +

1

σ2
w

X̃ ′d(H
−1
ψ z)

)
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with X̃d = H−1ψ Xd. As before, we construct a band approximation of X̃d by replacing all
elements less than 10−6 with 0. Then, the precision Kd is a band matrix and the precision
sampler in Chan and Jeliazkov (2009) is used to sample d.

Step 4: To implement Step 4, note that λv and λn are conditionally independent
given the parameters and other states. Hence, we can draw them sequentially using
the auxiliary mixture sampler of Kim, Shepherd and Chib (1998). See also Koop and
Korobilis (2010), p. 308–310, for a textbook treatment. Note that in conventional imple-
mentations, a forward-filtering-backward-smoothing algorithm is used; here it is replaced
by the more efficient precision sampler of Chan and Jeliazkov (2009).

Steps 5 and 6: Both the densities of (µd0, µd1) and (σ2
d0, σ

2
d1) are standard. In fact,

we have

(µdi |Data, π∗, b, d, λv, λn, θ−{µd0,µd1}) ∼ N(µ̂di, K
−1
di ),

(σ2
di |Data, π∗, b, d, λv, λn, θ−{σ2

d0,σ
2
d1}) ∼ IG(νdi + T/2, S̃di),

where Kdi = 1/Vµ+(1−ρ2di)/σ2
di+(T−1)(1−ρdi)2/σ2

di, µ̂di = K−1di (ai/Vµ+(1−ρ2di)di1/σ2
di+∑T

t=2(1−ρdi)(dit−ρdidi,t−1)/σ2
di) and S̃di = Sdi+((1−ρ2di)(di1−µdi)2+

∑T
t=2(dit−µdi(1−

ρdi)− ρdidi,t−1)2)/2.
Step 7: It follows from (7) that

p(ρdi |Data, π∗, b, d, λv, λn, θ−{ρd0,ρd1}) ∝ p(ρdi)gρdi(ρdi)e
− 1

2σ2
di

∑T
t=2(dit−µdi−ρdi(di,t−1−µdi))2

,

where p(ρdi) is the truncated normal prior for ρdi and g(ρdi) = (1− ρ2di)1/2 exp(− 1
2σ2
di

(1−
ρ2di)(di1−µdi)2). This conditional density is non-standard, and we implement an independence-
chain Metropolis-Hastings step with proposal distribution N(ρ̂di, K

−1
ρdi

), where Kρdi =

1/Vρ+X
′
ρdi
Xρdi/σ

2
di and ρ̂di = K−1ρdi(a2/Vρ+X

′
ρdi
yρdi/σ

2
di), withXρdi = (di1−µdi, . . . , di,T−1−

µdi)
′ and yρdi = (di2−µdi, . . . , diT −µdi)′. Then, given the current draw ρdi, a proposal ρ∗di

is accepted with probability min(1, gρdi(ρ
∗
di)/gρdi(ρdi)); otherwise the Markov chain stays

at the current state ρdi.
Step 8: To sample ψ, note that

log p(ψ |Data, π∗, b, d, λv, λn, θ−{ψ}) ∝ log p(z |π∗, d, σ2
w) + log p(ψ)

∝ − 1

2σ2
w

(z − d0 −Xπ∗π∗)′(HψHψ)′−1(z − d0 −Xπ∗π∗) + log p(ψ),

where p(ψ) is the prior density of ψ. Following Chan (2013), we sample ψ via an
independence-chain Metropolis-Hastings step. Specifically, since this log density can be
quickly evaluated using band matrix routines, we maximize it numerically to obtain the
mode and negative Hessian, denoted as ψ̂ and Kψ, respectively. Then, we generate can-

didate draws from the N(ψ̂,K−1ψ ) distribution.
Step 9: To sample σ2

b , σ
2
w, φv and φn, first note that these parameters are conditionally

independent given the data and the states. Hence, we can sample each element one by
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one. The variance parameters σ2
w, φv and φn follow inverse-Gamma distributions:

(σ2
w |Data, π∗,b, d, λv, λn, θ−{σ2

b ,σ
2
w,φv ,φn}) ∼ IG

(
νσ2

w
+
T

2
, Sσ2

w
+

1

2

T∑
t=1

ε2z,t

)
(φi |Data, π∗,b, d, λv, λn, θ−{σ2

b ,σ
2
w,φv ,φn})

∼ IG

(
νφi +

T − 1

2
, Sφi +

1

2

T∑
t=2

(log(λit)− log(λi,t−1))
2

)
, i = v, n,

where the elements of εz can be computed as εz = H−1ψ (z−Xdd). Next, the log conditional
density for σ2

b is given by

log(σ2
b |Data, π∗, b, d, λv, λn, θ−{σ2

b ,σ
2
w,φv ,φn})

∝ −(νσ2
b

+ 1) log σ2
b −

Sσ2
b

σ2
b

− T − 1

2
log σ2

b −
1

2σ2
b

T∑
t=2

(bt − bt−1)2 + gb(b, σ
2
b),

which is a nonstandard density. To proceed, we implement an MH step with the proposal
density

IG

(
νσ2

b
+
T − 1

2
, Sσ2

b
+

1

2

T∑
t=2

(bt − bt−1)2
)
.

Marginal likelihoods are calculated by decomposing the marginal density of the in-
flation data as the product of predictive likelihoods. Specifically, let π1:t = (π1, . . . , πt)

′

denote the inflation data up to time t. Then, we can factor the marginal likelihood for
model Mk as follows:

p(π |Xk,Mk) =
T∏
t=5

p(πt | π1:t−1, X1:t,k,Mk),

where p(πt+1 |π1:t,Mk) is the predictive likelihood and Xk is a set of covariates used in
model Mk such as the survey data or the unemployment gap.19

19We discard an initial four predictive likelihoods to reduce the sensitivity to priors.
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