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ABSTRACT 

Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric 

diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a 

molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial 

orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer 

units. In the simulations, the maximum concentration and degree of ordering are attained for non-

selective nanorods near the domain boundary. In this case the nanorods have a certain tendency to align 

parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar 

orientation ordering of spherical nanoparticles located at the lamellar interface is predicted by the 

molecular theory which takes into account that the nanoparticles interact with monomer units via both 

isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the 

nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer 

components on the phase stability and orientational order of nanoparticles. If the volume fraction of the 

nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state 

into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering 

of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its 

lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer 

domains are stacked side by side into smectic layers that fill domain space. Thus, spontaneous 

organization and orientation of nanorods leads to a spatial modulation of anisotropic composite 

properties creating an opportunity to align block copolymers by external fields which may be important 

for various applications. 
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I. INTRODUCTION 

After a sixty-year history of block copolymer studies the macromolecules composed of long 

chemically different monomer unit sequences have become well-defined objects capable of exhibiting 

nanostructures with diverse morphology and periodicity.
1
 Various methods for the directed self-

assembly of thin block copolymer films have been developed almost up to the technological level.
2,3

 

Although the potential of pure block copolymers in the design of lithography,
4
 photovoltaic,

5
 

membrane,
6
 and other functional materials is not fully realized yet,

7
  there is a significant evidence  that 

it can be further multiplied in hybrid composites with nanoparticles
8-10

 that are able to form highly-

organized structures via self-organisation.
11

 Depending on their chemical nature, nanoparticles can in 

`fact considerably improve mechanical, barrier, electric, optical, and other characteristics of matrix 

polymers while preserving their good processability.
12,13

 However, the design of such composite 

systems usually requires a sophisticated strategy that encompasses nanoparticle synthesis, surface 

modification, directed introduction into the polymer bulk, and stabilization there. In the block 

copolymer case the problem is only complicated by the selectivity of nanoparticles towards different 

blocks and local perturbations that they introduce into the copolymer microstructure. As a result, the 

directed self-assembly of block copolymer films in the presence of nanoparticles is still limited to rare 

laboratory experiments.
14,15

 

Among many factors that determine the complex behavior of hybrid composites, the anisotropy of 

the nanofillers is one of the most important properties. It affects the total system anisotropy, which is a 

target parameter in charge and molecular transport, light conversion, and other functional applications. 

Whereas this is indisputable for 2D nanostructures
13

 (clay platelets, graphene sheets) and 1D 

nanostructures with high (>10) aspect ratio
16-21

 (nanowires, nanotubes), the anisotropy of nanoparticles 

has so far received limited attention in spite of their shape abundance offered by synthetic 

chemistry.
22,23

 Perhaps the simplest small anisotropic objects are nanorods, and their behavior in block 

copolymer films has been considered in Refs. 24-36, which are mainly short communications just 

focused into the visualization of the morphology of the prepared composites. In any case the number of 
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publications dealing with anisotropic nanoparticles in block copolymers is vanishingly small compared 

with the total number of publications on block copolymer nanocomposites over the past decade. 

In the existing studies, the host matrices are limited to the diblock copolymers of PS with 

PMMA,
24,27-31

 P2VP,
26,36

 and modified P4VP,
25,32-35

 doped with nanorods made of Au,
24-26

 ZnO,
27

 

CdSe,
28-34

 CuPt,
35

 and Fe2P
36

 and covered by low- or high-molecular mass ligands providing their 

selective localization in a particular block copolymer domain. At the present stage, controlling such a 

selectivity and preventing nanorod aggregation are considered to be the main results. Other observations 

include preferential alignment of nanorods along lamellar or cylindrical domain walls or 

micelles,
24,25,27,28,31-36

 alignment in the direction perpendicular to the boundaries,
25,29,30

 segregation of 

nanorods at the substrate
24,26

 or at the free surface,
29-31

 and changes in the domain morphology and 

orientation.
31,34

 In general, the reported results are mainly qualitative and the information on the role of 

nanorod concentration, size, aspect ratio, and ligand structure of the surface layer is rather fragmentary. 

Theoretical research on polymer-based nanocomposites is also at its early stage. Phase behavior of 

pure block copolymers is effectively captured by the field-theoretic approaches,
37

 including in particular 

the self-consistent field theory (SCFT).
38

 In the case of polymer nanocomposites the distribution of 

nanoparticles can be accounted for by combining SCFT with the density functional theory.
39,40

 On the 

other hand, the accuracy of field-based techniques in describing the orientation of the anisotropic 

particles and, therefore, in predicting the macroscopic anisotropy of the composite is quite limited. As 

an alternative, hybrid particle-field approaches have been developed
41-43

 that employ particle-to-field 

transformation for polymer chains but retain explicit treatment of nanoparticles. Formally such an 

approach enables one to consider nanoparticles of arbitrary shape and even grafted with polymers but at 

the same time it increases the computational cost and causes inherent difficulties in the simultaneous 

solution of partial differential equations and implementation of simulation procedures.
44

 As a result, the 

number of publications on the topic is still very limited.
26,45

 

A possible simplification here is to fix the phase-separated structure of a diblock copolymer in 

order to study in detail the spatial distribution and orientational ordering of anisotropic nanoparticles in 
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such a system. This can be a promising reasonable approach. On the one hand, the volume fraction of 

nanoparticles in polymer composites is usually low (< 0.1) and, therefore, it is not expected, at least 

thermodynamically, to considerably affect the copolymer morphology. On the other side, the model of 

composite where the nanorods are subject to a given molecular field has a clear liquid-crystalline motif 

and hence the corresponding theoretical results can be used. Recently, two of us have developed a 

molecular mean-field theory which enables one to describe the spatial distribution and nematic ordering 

of anisotropic nanoparticles in lamellae and hexagonal phases of block copolymers.
46

 In that model a 

nanoparticle is treated as a spherical object possessing some anisotropic properties and interacting with 

monomer units of polymer chains via a potential composed of isotropic and anisotropic parts. Whereas 

the isotropic interaction determines the location of nanoparticles depending on their selectivity with 

respect to chemically different monomer units, the anisotropic interaction (which apparently has not 

been introduced before in the theory of polymer nanocomposites) is responsible for the nanoparticle 

ordering and alignment relative to the copolymer domains. The most interesting effect predicted in Ref. 

46 is the possibility of mutually perpendicular preferential orientation of anisotropic nanoparticles in 

neighboring domains. 

In this study, we perform a coarse-grained molecular dynamics simulation of nanorods 

distribution and alignment in the lamellar block copolymer microstructure. Using dissipative particle 

dynamics (DPD) we locate the order-disorder transition in the composite, describe the stationary spatial 

distribution of its components, and investigate the role of nanorod content, length, stiffness, and 

selectivity. Large-scale molecular simulations of nanoparticle self-assembly in polymeric systems still 

remain a challenge
47

 and DPD is currently the only reported technique to study the effect of 

monodisperse,
48,49

 bidisperse,
50

 and diblock (Janus-like)
51

 nanorods on the diblock copolymer 

lamellar
48,50,51

 and hexagonal
49-51

 phases and the behavior of carbon nanotubes (modeled as large 

nanorods) in concentrated diblock copolymer solutions.
52

 Ref. 48 can be called a predecessor of the 

present study carried out in a much smaller (ten times by volume) simulation box and focused on the 

morphological changes introduced by adding more and more nanorods rather than on the local 
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distribution of the composite components and orientational order of the nanorods, which is the primary 

aim of this study. For example, the orientational (nematic) order parameter reported in Ref. 48 is an 

average over the entire system, whereas we evaluate it locally and study the corresponding order 

parameter profiles in different domains. 

The paper is arranged as follows. In the next section we describe the simulation method and 

algorithms used for the data processing. Then we present and discuss the simulation results. A special 

section contains a summary of the theory proposed in Ref. 46 and the numerical results of the theory are 

compared with the results of computer simulations. Finally, we consider the prospects for observing the 

predicted effects in laboratory experiments and summarize our findings. 

 

II. SIMULATION MODEL 

A. Dissipative particle dynamics 

In this study, we use dissipative particle dynamics (DPD), a well-known coarse-grained molecular 

dynamics technique proposed by Hoogerbrugge and Koelman
53,54

 for the simulation of liquid 

suspensions and extended to polymer systems by Espanol, Groot and Warren
55,56

 by mapping it onto the 

classical Flory-Huggins theory. 

DPD particles, each representing a group of repeating units constituting a polymer chain, interact 

by conservative, dissipative, and random forces, which are pairwise additive. The net force 





ij

R
ij

D
ij

C
iji )( FFFf  acting on a given particle i is calculated by summation over all other particles 

within a certain cut-off radius rc. Let rc, the particle mass, m, and kBT be the unit distance, mass, and 

thermal energy, respectively, thus defining the unit time Tkmrc B0 / .  

The conservative force represents the excluded volume interactions and elastic interactions of 

particles i and j in the dimensionless form ijsijijij

C

ij kra rrF 


)1( , where rij = ri – rj, rij = |rij|, 

ijijij r/rr 


; aij is a maximum repulsion between those particles attained at ri = rj; and ks is a Hookean 

spring constant, which is taken to be ks = 4 for particles linked in a polymer chain and zero for non-
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bonded particles. The dissipative and random forces, ijijijij

D

ij r rvrF


)()( 2    and 

tr ijij

R

ij  rF


)( , respectively, constitute the Groot-Warren thermostat,
56

 where  is a friction 

coefficient related to a thermal noise amplitude  via the fluctuation-dissipation theorem, 2
 = 2;(r) 

is a weight function,  is a normally distributed random variable with zero mean and unit variance, 

which is uncorrelated for different particle pairs, t is the time step of an integration scheme, and vij = vi 

– vj is the relative velocity of particles i and j. Following Ref. 56, we choose  = 3, (r) = 1 – r, and the 

average density of particles 0 = 3. 

The simulation box of sizes lxlylz = 242424 rc
3
 periodic in all three directions is used. It is 

filled with a total of 41472 DPD particles of three kinds, A, B, and R. A diblock copolymer chain 

A10B10 consists of N = 20 bonded particles forming A and B blocks of NA = NB = 10. The chains are 

thermostated as described above. All nanorods are made of NR = 3, 4, 5, or 7 R particles connected by 

rigid bonds of the constant length bR = 0.7rc. Spring-like bond potentials do not apply in this case. 

Nanorods are simulated as rigid bodies in the NVE ensemble using an algorithm by Miller et al.
57

 Their 

correct temperature is maintained through the interactions with the thermostated polymeric DPD liquid 

surrounding them. It is worth noting that semi-rigid mesogens can be also simulated with DPD using an 

additional spring force between their first and last particles
58

 or by introducing angle potentials.
59

 For 

the sake of comparison we perform some simulations by replacing nanorods with flexible chains 

consisting of NR = 5 particles of R type. 

The equations of particle motion, iiii dtddtd Fvvr  /   ,/ , are solved numerically using a free 

source code LAMMPS
60

 that implements the so called DPD-VV integration scheme
61 

(modified 

velocity-Verlet algorithm) with a time step t = 0.02. 

In Ref. 56 it was recommended to use the repulsion parameter between similar particles of a DPD 

liquid, a = 25, in order to match the compressibility of water at the chosen particle density 0 = 3. 

However, our preliminary simulations of a pure nanorod melt with NR = 5, kBT = 1, and aRR = 25 
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demonstrated no ordering (Fig. 1, left picture) due to weak excluded-volume interactions. This agrees 

with the literature, where it is reported that rigid
62

 and semi-rigid
63

 rods reveal a noticeable order at NR 

 7 and kBT  0.7. It means that for the composite modeling we would have to consider only nanorods 

which length exceeds the period of a lamellar structure in diblock copolymers. Then, it is inconvenient 

to vary the temperature in a DPD model since it simultaneously affects both repulsive forces and 

thermal fluctuations.  

 

 

FIG. 1. Ordering in a melt of nanorods with NR = 5 upon increasing the repulsion parameter aRR 

from 25 (left) to 50 (right).  

 

The tendency to order can also be enhanced by adding a soft attractive anisotropic potential to the 

particles constituting neighboring nanorods.
63

 In this paper we use another method to achieve the same 

goal by increasing the repulsion parameter a ( = A, B, or R) from the value of 25 up to 50 for similar 

particles, thus giving no importance to a particular value of the DPD liquid compressibility. This 

appears to be sufficient for achieve the nematic ordering in the melt of nanorods with NR = 5 at kBT = 1 

(Fig. 1, right) and we anticipate a similar ordering in their composite with the copolymer matrix. 

The interaction of nanorod particles with A and B blocks is described by a selectivity parameter  

= (aRB – aRA)/(aAB – aRA), which varies from zero for the non-selective case, when aRB = aRA = 50, to 

unity for the highest selectivity, when A and R particles are the same so that aRB = aAB. The overall 
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volume fraction of nanorods in the majority of simulations takes the values R = 0, 0.01, 0.02, 0.05, and 

0.1, while the net volume fractions of A and B units are equal to A = B = (1 – R)/2. 

 

B. Simulation data processing 

DPD simulations enable us to visualize stationary states of the composite and to describe them in 

terms of the local volume fractions of A, B, and R particles, A(r), B(r), and R(r), and the scalar 

orientational order parameter, S(r), that characterizes the average orientation of nanorod axes a (|a| = 1) 

relatively to the unit normal to lamellar planes, h: 

   1)(3
2

1
)(

2
 hrr aS , (1) 

where the angular brackets denote the averaging over a local subset of rods. Zero value of the order 

parameter corresponds to an uncorrelated orientation of nanorods, whereas S > 0 (S < 0) indicates their 

tendency to perpendicular (parallel) orientation with respect to the lamellar plane. In general,  0.5  S 

 1. 

When a lamellar microstructure is formed, we are interested in the distribution of all components 

along the normal to the layers. However, the orientation of lamellas in a periodic simulation box is 

random and a regular procedure for extracting the desired distribution is needed. We make use of the 

fact that a normal to the lamellar plane can be defined as an average vector connecting the centers of 

masses of blocks A and B in one copolymer chain. Such connecting vectors are plotted for all 

copolymers in the system, then normalized to the unit length and translated so that their starting points 

coincide. Ends of those vectors now form a cloud of 10
5
 points pi = {pi,x, pi,y, pi,z} non-uniformly 

distributed over the surface of a unit sphere. The gyration tensor of this cloud is defined as 

 

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Diagonalization of J yields three eigenvalues and the three corresponding eigenvectors. The 

eigenvector corresponding to the largest eigenvalue is the desired vector h, which is normal to the 

lamellar planes. In what follows, we designate its direction as the z-axis. All local variables describing 

the composite structure are expressed as the functions of z: A(z), B(z), R(z), S(z), while the center of a 

B layer is chosen as the origin (z = 0). 

 

III. RESULTS AND DISCUSSION 

A. Order-disorder transition 

Microphase separation in the pure diblock copolymer A10B10 and its composites with nanorods 

has been simulated by annealing the initially disordered structures upon a gradual, incremental (by 0.1) 

increase in the repulsion parameter between dissimilar DPD particles, aAB. An order-disorder transition 

(ODT) has been identified by a drop in the potential energy of the ordered system (Fig. 2), appearance 

of a secondary peak in the static structure factor (the primary peak was shifted to q  0 even in the 

disordered phase due to composition fluctuations) and visually from the structure snapshots (see Ref. 64 

for the details). 

A tendency of diblock copolymer to microphase separation is governed by the difference a = 

aAB – aAA, which is proportional to the Flory-Huggins interaction parameter:
56

  = (0.306  0.003)a. It 

has been found that in the pure copolymer melt with aAA = aBB = 50 the order-disorder transition (ODT) 

occurs at aAB = 55.7 which corresponds to N = 34.9. 

One notes that the above-mentioned  does not coincide with the effective parameter e which 

enters the mean-field theory of Leibler.
65

 The theory predicts phase separation in a melt of infinitely 

long (N  ) diblock copolymer chains if the product eN exceeds the critical value of 10.5. Extension 

of the Leibler’s theory to finite N still constitutes a problem. Whereas fluctuation corrections calculated 

by Fredrickson and Helfand
66

 in terms of the so-called invariant polymerization degree Ninv appear to be 

useful for interpretation of the experimental data, they can hardly be used in a quantitative 
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interpretation of the simulations that deal with relatively short chains. For instance, both DPD
67,68

 and 

Monte Carlo
69

 simulations of block copolymers typically yield critical values of N which are 

considerably higher than 10.5. Only recently it has been shown
70-72

 that the thermodynamics of any 

diblock copolymer melt is fully controlled by eN and Ninv, while the relation between e and the 

parameters a, which describe binary interactions between copolymer units, is nonlinear. A method to 

derive such a relationship has been suggested
70-72

 based on the analysis of the simulated or the 

experimental static structure factor in terms of the fluctuation theory. Whereas this task is beyond our 

study, we can evaluate the critical value of eN using the explicit formulae proposed in Ref. 70: crN = 

10.5 + 41.0 3/1

invN  + 123.0 56.0

invN , where, by definition, 23

0 )( bNN inv   is proportional to the number 

of polymer chains within the volume occupied by a given chain of N units. In our system N = 20, 0 = 3, 

b = 0.9037rc so that Ninv = 98.0 and hence the ODT occurs at crN = 28.8. Here the parameter b has 

been calculated from a separate simulation of the homopolymer DPD liquid at a = 50 in a larger 

323232 rc
3
 box. It has been found that for N > 100 the gyration radius of a chain as a function of its 

polymerization degree, Rg(N), is given asymptotically by the equation 22 )00001.013611.0( cg NrR   

from which )/)(6(lim 22 NNRb g
N 

  has been calculated. At the same time, substitution of the critical 

repulsion parameter aAB = 55.7 into the standard DPD relation  = 0.306a yields crN = 34.9, which 

means that this relation is incorrect at least outside the interval 2  N  10 where it has originally been 

proposed in Ref. 56. 

Potential energy of the composite, calculated from the simulation data, is presented in Fig. 2. One 

can readily see that the introduction of nanorods into the block copolymer melt does not have a 

pronounced effect on the critical value of the repulsion parameter aAB, which falls into the range 

between 55.7 and 56.5, when the fraction of nanorods R is increased from 0 to 0.1. The observed minor 

increase in the critical value of aAB could be caused by screening of the interactions between A and B 
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blocks by the R particles. For R = 0.2 the lamellae are heavily distorted and the potential energy is 

roughly monotonic in Fig. 2, while the ODT can still be detected visually. 

 

FIG. 2. Potential energy of the composite as a function of the repulsion parameter between A and B 

particles, aAB, for different values of the average volume fraction of highly selective ( = 1) 

nanorods, R.  

 

B. Local composite structure 

For a symmetric copolymer the increase of the repulsion parameter aAB above the ODT value 

leads to the formation of a lamellar microstructure. In the absence of a simple accurate relation between 

e and a we can use a crude equation 

 
cr

e

a

aN






5.10


, (3) 

to estimate eN. One concludes that for a = aAB – aAA = 20 and acr = 55.7 – 50 = 5.7 our simulations 

correspond to eN = 36.8 for infinitely long chains, which is within the strong segregation regime. All 

simulations of microphase-separated composites described below have been carried out for aAB = 70 

when a well-defined structure with almost perfect domains is formed. 
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One expects that sufficiently anisotropic nanoparticles will be orientationally ordered in the 

polymer matrix or in their own phase. The corresponding structure snapshots are shown in Fig. 3 for the 

most selective case  = 1, when the majority of the nanorods are located within A layers. One can 

readily see that the lamellar microstructure is preserved even at a high nanorod content, R. Some 

distortions appear at R > 0.1 but no sign of a transition into the hexagonal or the bicontinuous 

morphology, predicted in Ref. 48, can be detected. We can merely assume that these transitions are the 

artifacts stemming from the small sizes of the simulation boxes which are comparable to the 

microstructure period. 

 

 

FIG. 3. Microphase-separated composites based on the diblock copolymer A10B10 doped with highly 

selective ( = 1) nanorods (blue) with NR = 5 for different values of the nanorod volume fraction, R, 

specified above each snapshot. The monomer units A and B are shown in red and light grey, 

respectively. 
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Spatial profiles of the variables A(z), B(z), R(z), and S(z), which describe the local composite 

structure, are presented in Fig. 4 for several nanorod content values which are equal or higher then those 

used in Fig. 3. The z-axis is perpendicular to the lamellae and is scaled by the structure period d, which 

takes the values from 7.95 to 8.29rc depending on the system composition. The model systems are 

strongly segregated, since there are no A units deeply inside B domains and vice versa. With aRB = aAB = 

70 > aRA = aAA = aBB = aRR = 50, the nanorods are selectively located in the A domains with a 

maximum at the center and nearly linear concentration decay towards the boundaries. 

 

  

FIG. 4. The local volume fractions, A(z) and B(z), of the A and B particles (left), and the local volume 

fraction of the nanorods, R(z), together with the orientational order parameter, S(z), for different 

values of the average volume fraction of nanorods, R, (right). In the interval 0.4 < z/d < 0.6 the values 

of S(z)  are not shown because in this region the local nanorod content is very low giving rise to strong 

fluctuations. Vertical dashed lines show the domain boundaries in the pure diblock copolymer melt. In 

all cases aAB = 70,  = 1, and NR = 5. 

 

At R < 0.1 the local orientational order parameter S is only slightly dependent on the total 

concentration of nanorods, which indicates that their anisotropic interaction is weak. The order 
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parameter is negative in A domains thus indicating that nanorods prefer to align in the lamellar plane in 

order to avoid protruding their ends beyond the domain boundaries. Tilted nanorods are most easily 

pushed out of B domains and, therefore, the minimum of S(z) is achieved  at the A/B interface. The 

concentration of nanorods in the bulk of B domains is very low but those few that are located there are 

aligned across the lamella, because in that case their ends have a chance to reach neighboring A 

domains (note that the nanorod length (NR – 1)bR = 2.8rc is nearly 2/3 of the domain width). 

Accordingly, S(z) is positive at the center of B domains though exact values are inaccessible because of 

the strong concentration fluctuations in those sparsely populated (R(z = 0) << 1) regions. Simulations 

of composites with slightly less selective nanorods have shown that S(z) indeed achieves a maximum at 

z = 0. The composite with R = 0.1 is characterized by a non-monotonic behavior of S(z) and by the 

undulations of the R(z) profiles within A domains (Fig. 4), which possibly reflect the effects of nanorod 

interactions. 

 

С. Effects of the nanorod length and stiffness 

Snapshots of the ordered diblock copolymers A10B10 doped by highly selective ( = 1) nanorods 

consisting of 3, 4, and 5 spherical particles are shown in Fig. 5 for R = 0.1. Visually all the systems are 

similar except for some clustering of longer nanorods. The corresponding local composition and 

orientational order parameter profiles are shown in Fig. 6 for the same composites, including the system 

containing flexible chains with NR = 5 instead of nanorods. It can be seen that the nanorod length and 

stiffness have almost no effect on the local composition, which appears to be mainly defined by the 

repulsion between dissimilar DPD particles. Orientation of nanorods is slightly more affected: whereas 

nanorods with NR = 5 demonstrate certain alignment in the direction of A-domain axis, the absolute 

value of the orientational order parameter naturally decreases with the decreasing nanorod length and 

completely vanishes for the flexible filler. 

The system with nanorods concentrated in one of the copolymer blocks seems to be the only one, 

which has been implemented so far in the laboratory experiments.
24-36

 Alignment of nanorods along the 
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domain axes, predicted by our simulations, is achieved when the excessive nanorod aggregation is 

suppressed  by imposing geometrical constraints in narrow domains
24,27,28,31,36

 or using specific pre-

modification of a host copolymer block.
25,32-35

 Otherwise, side-by-side interaction between nanorods 

leads to the formation of extended bundles that fill copolymer domains with perpendicularly aligned 

nanorods
25,29,30

 or remain mutually disordered,
32,34

 kinetically hinder microphase separation,
30,33,34

 or 

just form a separate phase.
28,29,36

 The authors of Ref. 34 have concluded that there exists a range of 

nanorod lengths optimal for their ordering in block copolymer domains. Shorter particles do not interact 

with copolymer blocks enough to be well-organized, whereas longer nanorods form clusters, which are 

believed to be kinetically trapped states.  

 

 

FIG. 5. Microphase-separated diblock copolymer A10B10 filled with highly selective ( = 1) nanorods 

with R = 0.1 and NR = 3, 4, and 5. Colors and repulsion parameters are the same as in Fig. 3. 

 

Our study corroborates the experimental observations: nanorods with NR = 5 are organized better 

than those with NR = 3 (Figs. 5, 6), they do not reveal stacking even at high concentrations (Fig. 3), 

whereas longer (N = 7) nanorods with length close to the width of A domains demonstrate drastically 

different behavior shown in Fig. 7. At R = 0.05 they are mainly oriented along lamellae, but if their 

content is increased up to R = 0.1, the nanorods align across lamellae and stack side-by-side forming 

clusters that are inhomogeneously distributed in the A domains. Taking into account that clusters 

survive even after switching off the effective repulsion between A and B particles, such a behavior can 
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be considered as the macrophase separation of nanorods and the host block copolymer. At R = 0.2 long 

nanorods form their own lamellae aligned along block copolymer ones, in which individual nanorods 

are strictly perpendicular to the interface. 

  

FIG. 6. The local volume fractions A(z) and B(z), of the A and B particles (left), the local fraction of  

the nanorods, R(z), and the orientational order parameter, S(z) (right), for different values of the 

nanorod length, NR (specified), and for the flexible chains with NR = 5. R = 0.1. Other parameters are 

as in Fig. 4. 

 

 

FIG. 7. Microphase-separated diblock copolymer A10B10 filled by highly selective ( = 1) nanorods 

with NR = 7 and R = 0.05, 0.1, and 0.2. Colors and repulsion parameters are as in Fig. 3. 
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Thus, both length and stiffness of the nanorods are the important factors that have to be optimized 

for designing anisotropic composites with macroscopically homogeneous structure. 

 

D. Effect of the nanorod selectivity 

In experiments the surface of nanoparticles can be modified to tune their interaction with a 

polymer matrix. So far we have considered nanorods highly selective towards one block of the diblock 

copolymer. An opposite case, when the nanorods are accumulated at the domain boundaries of a 

copolymer microstructure, is also quite possible. Migration of nanorods from A domains to the A/B 

interfaces is clearly visible in the snapshots of the stationary structures that correspond to different 

values of the selectivity parameter  introduced before (Fig. 8). One can readily see that at the boundary 

the non-selective ( = 0) nanorods are mainly aligned parallel to the lamellar plane, while in the A and 

B domains they tend to align in the perpendicular direction in order to reach the thermodynamically 

beneficial interface with their ends. This becomes even more clear after considering the distribution of 

the local parameters presented in Fig. 9.  

 

 

FIG. 8. Microphase-separated composites based on the diblock copolymer A10B10 (monomer units 

A and B are shown in red and grey, respectively) and nanorods (blue) with R = 0.1 and NR = 5. The 

selectivity parameter  is specified above each snapshot. 

 



 

19 

The less is the selectivity parameter, the more symmetrical are the distributions of A and B blocks 

and nanorods. Parallel (perpendicular) alignment of nanorods in A (B) domains is weakened, while their 

parallel orientation at the boundaries is only strengthened. At  = 0.5 the maximum concentration of 

nanorods is achieved at the A/B interface. The nanorods are randomly distributed in the bulk of the A 

domains and are aligned mainly perpendicular to the boundary at the center of the B domains, although 

their concentration there is still very low. For  < 0.5 the weak perpendicular alignment of nanorods 

(Smax  0.2) is found in both A and B domains, while somewhat stronger (Smin   0.3) tendency for the 

parallel alignment is found in the interfacial region. 

 

  

FIG. 9. The local volume fractions, A(z) and B(z), of the A and B particles (left), the local fraction of 

the nanorods, R(z), and the orientational order parameter, S(z) (right), for different values of the 

selectivity parameter  (specified) with R =0.1 and NR = 5. Other details are as in Fig. 4. 

 

It is interesting to compare the distribution and alignment of highly selective ( = 1) and non-

selective ( = 0) nanorods. In both cases the most populous region (A domains and the A/B interfaces, 

respectively) is characterized by two to three times the fraction of nanorods as compared with the 
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average R =0.1 and their preferential alignment parallel to the lamellae. However, this alignment effect 

is considerably more pronounced for the non-selective nanorods (Smin   0.3) in comparison with the 

selective ones (Smin   0.1). If nanorods are located predominantly in A domains, the latter swell that is 

seen from the shift of A/B boundaries in Fig. 9 from dashed vertical lines corresponding to the pure 

copolymer melt towards the center of the B domain. Non-selective nanorods are concentrated at the 

domain boundaries thus decreasing the number of A/B monomer unit contacts and, consequently, 

lowering the interfacial tension. At the same time their local concentration is still too low to interfere 

with A-B junctions of the diblock copolymer. Indeed, the total number of A-B junctions in our 

simulation cell is 41472 (number of DPD particles)  0.9 (average copolymer fraction) / 20 (copolymer 

length) = 1866. Usually our cell hosts three A and B domains that means six A/B domain interfaces 

(Fig. 8). Taking rc as the interfacial thickness and recalling that the cell thickness is 24 rc, we find that 

41472  0.9  (6/24) = 9331 DPD particles are situated at the interface, where they form 9331/2 = 4665 

contacts. This is a lower bound, since a particle can form several pairwise contacts and the interface can 

be thicker. Increasing the local concentration of nanorods at the interface from 0.1 to 0.2 means 

replacing 41472  (0.2 – 0.1)(6/24)/2 = 518 A/B contacts with A/R or B/R contacts. This seems to be a 

feasible task since at least 4665 – 1866 = 2799 A/B contacts (60%) at the interface are not junctions. 

Thus nanorod segregation to the domain boundaries should not considerably affect the lamella 

morphology of the composite. 

To the best of our knowledge, composites with weakly- or non-selective interactions between 

polymer blocks and the nanorods have not been studied in laboratory experiments yet. Note that the 

affinity of spherical nanoparticles to copolymer blocks and therefore their preferential location can be 

effectively controlled by grafting suitable ligands to the particle surface.
73,74

 Similar experimental 

studies with anisotropic nanoparticles would be highly desirable because in this particular case one 

expects the maximum difference in the degree of the orientational ordering of nanorods between the 

centers of the blocks and the boundaries of the lamellae. One also expects a non-zero local 

concentration of nanorods throughout the whole composite.  
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IV. COMPARISON WITH THE THEORY 

In the general case the interaction between an anisotropic nanoparticle and an isotropic monomer 

unit of a polymer chain should be anisotropic, i.e., it should depend on the orientation of the unit vector 

ai in the direction of the primary axis of the nanoparticle. In the case of a rod-like particle this unit 

vector is parallel to the symmetry axis of the rod. In the computer simulations of polymer 

nanocomposites, described above, the nanoparticle has been modeled by several isotropic interaction 

sites which directly interact with monomer units. One notes that the interaction between each site and 

the isotropic monomer unit is isotropic, but the sites are linked together in a rod-like structure, and as a 

result the total nanoparticle – monomer unit interaction potential becomes anisotropic, i.e., it depends 

on the orientation of the rod with respect to the intermolecular vector between the center of the 

nanoparticle and the monomer unit.  

Multi-site model interaction potentials are common in computer simulations of anisotropic fluids, 

but they are generally too cumbersome to be used in a molecular-statistical theory. Instead we employ a 

simple interaction potential between the rod-like nanoparticle and the isotropic monomer units which is 

composed of the isotropic and anisotropic parts:  

)()()()()()(),( 2BB2AA ijijijiijijiji PrrIrrJPrrIrrJjiU uu  aa , (4)  

where ri is the position vector of the nanoparticle i and ai is the unit vector in the direction of its the 

long axis, rjA and rjB are the position vectors of the monomers A and B, respectively, rij = ri – rj and uij 

is the unit vector in the direction of rij and P2(a·u) is the second Legendre polynomial. Here JA, JB are 

the isotropic coupling constants between the nanoparticle and the monomers A and B, respectively, 

while IA, IB are the corresponding anisotropic interaction constants. The anisotropic interaction between 

isotropic monomers and anisotropic nanoparticles in Eq. (4) describes the coupling between the long 

axis of a nanoparticle ai and the unit vector uij pointing from the particle to the monomer.  
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In the molecular field approximation the single particle density distribution function, which 

depends on nanoparticle positions and orientations, can be expressed in the form of the Boltzmann 

distribution:  
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where Z is the normalization factor (partition function) and the mean-field potential is obtained by 

averaging the interaction potential of Eq. (4) over all positions of monomers A and B in the microphase-

separated state: 
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where A, B are the local densities of monomers A and B, respectively.  

Using the distribution function of Eq. (5), the local orientational order parameter of anisotropic 

nanoparticles can be written in the form:  
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where k is the block interface normal vector. 

As shown in Ref. 46, in the limiting case of strong (or, more precisely, superstrong,
75

 when 

domain boundaries are of the order of the monomer unit size) segregation it is possible to obtain an 

explicit analytical expression for the mean-field potential assuming for simplicity that J(r) = J0r
6

 and 

I(r) = I0r
6

 and, where  = A, B. 

For 0Rz   where the z-axis is perpendicular to the flat boundary between the blocks, 0R is the 

radius of nanoparticle-monomer unit interaction and 0z at the boundary:  
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For 00 Rzr  , where 0r  is the nanoparticle radius:  
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For z < r0: 
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Here J(r) = J0A  J0B and I(r) = I0A  I0B.  

One notes that in the middle of the block the mean-field potential is constant, i.e., it depends 

neither on the nanoparticle position nor on its orientation because the surrounding medium is isotropic 

and homogeneous. In contrast, in the boundary region the mean-field potential depends on the distance 

between the nanoparticle and the boundary between domains and on the orientation of the nanoparticle 

axis. In this region a nanoparticle interacts simultaneously with monomer units of both kinds, located in 

domains A and B, and as a result the average interaction becomes anisotropic. Note also that for the 

particle close to the domain boundary, the mean-field potential is an odd function of z and it vanishes 

when the particle center is directly at the boundary.  

In the case of weak segregation the difference between the local densities of monomer units A and 

B is relatively small and in the first approximation it can be expressed as (r1) – (r2) =  cos(q·r12) 

where q is the wave vector of the microphase structure and  is the corresponding amplitude. In this 

case the mean-field potential is given by the following expression
46

 

 )()cos(),( 2 krqr  aa PIJU qqMF  , (11) 

where  

   )coscos()(cos2 2  qrrJddrrJ q  and   )coscos()(coscos)(2 2

2  qrPdrIdrrIq . 

The density and orientational order parameter profiles in the lamellae phase have been calculated 

numerically in the limiting cases of strong and weak segregation, and the characteristic results are 

presented in Fig. 10. One can readily see that the results of the molecular theory are qualitatively similar 
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to those obtained by computer simulations even though there are significant quantitative discrepancies. 

In particular, in the framework of this simple theoretical model the anisotropic nanoparticles are 

orientationally ordered in a boundary region between the blocks due to the selectivity of the interaction 

between the particle and the monomer units of the two different kinds which is described by the 

constants J and I. Similar to the results of computer simulations, the orientational (nematic) order 

parameter possesses opposite signs in different blocks, that is the long axes of anisotropic nanoparticles 

are aligned parallel to the boundary between the blocks on one side of the boundary and perpendicular 

to the boundary on another side. As expected, the nanoparticles are mostly located in the block with 

the strongest isotropic interaction between the monomer units and the nanoparticles. 
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FIG. 10. (a) The theoretical local volume fraction, R(z), and (b) orientational order parameter, S(z), 

of nanoparticles across the lamellar diblock copolymer domains A (grey) and B (light blue) in the 

case of strong (red curves) and weak (blue) segregation. The domains thickness is d = 2dA = 2dB = 
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12r0, the interaction radius R0 = 3r0, the isotropic and anisotropic interaction constants are J = 

kBT, Jq = 3.72J and I =  3kBT, Iq =  0.175I, respectively. 

 

In the framework of this simple theoretical model the anisotropic nanoparticles are orientationally 

ordered only in the boundary region while in the computer simulations they are also ordered inside the 

domains. This is mainly related to the difference in model interaction potentials. In the theoretical 

model monomer units interact with the center of a nanoparticle while in computer simulations the 

corresponding interaction centers are distributed along the nanorod with the length comparable with the 

size of a block. As a result the center of such a nanorod may be located in the central part of the block 

and the ends may be located close to the boundary depending on its orientation. The effective 

anisotropy of the total interaction potential is then determined by the interaction of the ends with the 

monomer units of the adjacent block.  

One can readily see that qualitatively the orientational order parameter profiles obtained by 

computer simulations are somewhat between the theoretical profiles obtained in the limits of strong (in 

fact superstrong that corresponds to an infinitely thin domain boundary) and weak segregation. This is 

partially explained by the fact that in the computer simulations the segregation is strong but not ideal. 

Another reason for a broader nanoparticle distribution in the simulations lies in the local averaging of z-

coordinates and orientations of all segments connecting DPD particles within nanorods, whereas the 

theory identifies z-coordinates of anisotropic nanoparticles with their centers. 

 

V. CONCLUSION AND OUTLOOK 

In this paper a model composite consisting of a diblock copolymer and anisotropic nanoparticles 

(nanorods) was considered. As far as we are aware, for the first time the main focus was laid on the 

local distribution and orientation order of nanorods in the lamellar microstructure formed by immiscible 

copolymer blocks. The role of nanorod content, length, stiffness, and selectivity has been studied. 

Similar to the experimental data, selective location of nanorods in one of the copolymer domains and 
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their orientation along the axis of the lamellae structure are the most common effects. The host diblock 

copolymer matrix keeps its lamellar structure for all values of the nanorod volume fraction. When the 

volume fraction of short nanoparticles exceeds 0.1, the domain defects become visible, whereas long 

nanorods can form their own phase, in which they are stacked side by side. Thus we do not support the 

prediction of Ref. 48 concerning the possible transformation of a lamellar morphology into the 

hexagonal one with the increasing nanorod concentration, which has been found in simulations using a 

much smaller box. 

An interesting result is the possibility of mutually perpendicular alignment of nanoparticles in the 

adjacent domains, which follows both from the coarse-grained molecular dynamics (DPD) simulation 

of nanorods and from the molecular theory which takes into consideration the anisotropic interaction 

between anisotropic nanoparticles of the spherical shape and the monomer units. Experimental 

verification of this prediction can be complicated, however, as the nanorod alignment perpendicular to 

the block boundaries in the lamellae phase is strongly correlated with a decrease in their local 

concentration. It seems that the most promising system in which the predicted alignment effect may be 

observed is a composite with non-selective nanoparticles. In this case, which corresponds to the 

leftmost snapshot in Fig. 8, the majority of the nanorods are located close to the domain boundaries and 

align along them, while a small but non-vanishing fraction of the nanorods reside inside domains and 

are aligned in the perpendicular direction. 

The present simulations can be extended to include asymmetric copolymers forming cylindrical 

micelles as a step towards the detailed study of the phase diagram of diblock copolymer – nanorods 

composites. From the theoretical standpoint, it would be interesting to consider non-spherical 

nanoparticles like dumbbells in order to investigate the correspondence between shape anisometry and 

anisotropy of the interaction potential. 
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