Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

High figure of merit (FOM) of Bragg modes in Au-coated nanodisk arrays for plasmonic sensing

Couture, Maxime and Brule, Thibault and Laing, Stacey and Cui, Wenli and Sarkar, Mitradeep and Charron, Benjamin and Faulds, Karen and Peng, Wei and Canva, Michael and Masson, Jean-Francois (2017) High figure of merit (FOM) of Bragg modes in Au-coated nanodisk arrays for plasmonic sensing. Small, 13 (38). ISSN 1613-6810

[img]
Preview
Text (Couture-etal-Small-2017-High-figure-of-merit-FOM-of-Bragg-modes-in-Au-coated-nanodisk-arrays-for-plasmonic-sensing)
Couture_etal_Small_2017_High_figure_of_merit_FOM_of_Bragg_modes_in_Au_coated_nanodisk_arrays_for_plasmonic_sensing.pdf
Accepted Author Manuscript

Download (1MB)| Preview

    Abstract

    We report that gold-coated nanodisk arrays of nearly micron periodicity have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface-enhanced Raman scattering (SERS), large scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays were covered with a gold layer to excite the Bragg modes (BM) which are the propagative surface plasmons localized by the diffraction from the disk array. This generated surface-guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method (3D FEM). The optimal gold-coated nanodisk arrays were applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they were integrated to a 96-well plate reader for detection of IgY proteins in the nM range in PBS. The potential for sensing in biofluids was assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons (SPPs) and comparable to more complex nanostructures, demonstrating that sub-wavelength features are not necessary for high performance plasmonic sensing.