The economic impact of healthy eating as part of climate change policy

D. Comerford

Fraser of Allander Institute, University of Strathclyde

IIOA Conference, Atlantic City, USA, June 2017

Research Question

- Red meat \Rightarrow carbon emissions
- Red meat \Rightarrow poor health outcomes
- Possibility of win-win if reduce red meat consumption?
- Springmann et al (2016) "adhering to health guidelines on meat consumption could cut global food-related emissions by nearly a third by 2050"
- But what are the economic consequences of this?
 - Is there a possibility for a "triple win"?
- Ask question in a Scottish context as part of wider project to develop environmentally augmented whole economy model of Scotland at Strathclyde
 - Funded by Scottish Government under RESAS Strategic Research Programme 2016-2021, Theme 1: Natural Assets

Policy Context

- Scottish Government aims (Scottish Government, 2015) to create "a more successful country, with opportunities for all of Scotland to flourish, through increasing sustainable economic growth"
- This encompasses policy that
 - enhances economic output, while
 - enhancing health of the population and
 - reducing carbon emissions
- underpinned by Climate Change Plan (Scottish Government, 2017), which recognises the role of agriculture in emissions and mentions the possible economic benefits of reduced emissions from agriculture

The Food & Drink sector in Scotland

- Scottish Government has identified 6 Key Sectors in which Scotland has comparative advantage, and in which intervention & policy is targeted
- One of these sectors is Food and Drink
 - Others are: Financial and Business Services; Life Sciences; Energy; Tourism; and Creative Industries.
- Policy context: economic growth, health, climate change? Yes, clearly.
 - Other policy implications: rural growth, spatial economic inequality, food security, ...

The Food & Drink sector in Scotland

	GVA	%Scot	Employment	%Scot	Exports	%Scot	Other Final	%Scot
	(£m)		(no. e'ees)		(£m)		Demand (£m)	
Agriculture	1,142	0.9%	39,778	1.8%	889	1.4%	931	0.9%
Fishing	74	0.1%	3,410	0.2%	157	0.2%	6	0.0%
Aquaculture	120	0.1%	4,049	0.2%	337	0.5%	4	0.0%
Meat processing	201	0.2%	5,743	0.3%	864	1.3%	230	0.2%
Fish & fruit processing	305	0.2%	7,361	0.3%	938	1.4%	241	0.2%
Dairy products, oils & fats processing	130	0.1%	2,670	0.1%	346	0.5%	237	0.2%
Grain milling & starch	19	0.0%	251	0.0%	63	0.1%	8	0.0%
Bakery & farinaceous	408	0.3%	10,928	0.5%	704	1.1%	290	0.3%
Other food	214	0.2%	4,829	0.2%	397	0.6%	124	0.1%
Animal feeds	55	0.0%	975	0.0%	134	0.2%	26	0.0%
Spirits & wines	2,205	1.8%	9,335	0.4%	3,628	5.6%	179	0.2%
Beer & malt	107	0.1%	1,178	0.1%	141	0.2%	41	0.0%
Soft Drinks	170	0.1%	2,038	0.1%	321	0.5%	77	0.1%
Total	5,149	4.2%	92,544	4.2%	8,919	13.8%	2,393	2.3%

Source: Scottish Government (2016)

NB Exports are both to rUK and to RoW

Healthy eating

- The Global dietary guidelines cited in Springmann et al (2016) limit red meat consumption to 300g per week, and energy to ~ 2250kcal per day
- \blacktriangleright Scottish Government (2010) says that, on average, Scots consume \sim 120 excess calories per day
- National Diet and Nutrition Survey (data from 2000 to 2001) suggests that in UK, people eat an average of 70g per day of red meat (~ 160kcal)
- i.e Translate healthy eating guidelines into 5% reduction in calories consumed; 39% reduction in red meat consumption; implies that non-red meat consumption falls by 3%

Disaggregating the Agriculture sector in the IO

- Given research question, and carbon intensity of red meat production, want to disaggregate Scottish Government IO table to split Agriculture into Red Meat and Other Agriculture
- ► Moxey (2016) does most of the work ⇒ Gross Output, GVA, intermediate inputs, employment levels for Red Meat
- ► Make assumptions on exports and intermediate sales ⇒ disaggregated IO table
- Results so far are with single set of assumptions, still to reconsider these and examine sensitivity of results

Disaggregating the Agriculture sector in the IO

- Inter-agriculture sales allocated using GVA
- Other intermediate sales are allocated to Red Meat/Other Agriculture on basis of minimising changes in mutipliers seen on non-agriculture
- Red Meat is assumed to be exported like Meat processing output
- Other components of final demand are assumed to be split by total non-exported final demand
- Income is split assuming same wage and profit shares in both Red Meat and Other Agriculture
- International imports of Red Meat estimated by noting that 45% of meat consumed in the UK is imported
- \blacktriangleright rUK imports are derived by then noting that Scotland is broadly self-sufficient in red meat on a net basis and has $\sim 20\%$ of UK herd
- Assume Scotland imports contain a share of other food and drink goods in same proportion as in domestically produced consumption

Scottish Carbon Emissions

- Carbon footprint (with imported emissions separately identified) from Scottish Government (2017b)
- Territorial emissions (by broad sectoral category) from National Atmospheric Emissions Inventory (see Salisbury et al, 2016)
- Apportion into IO table using both broad sectoral categories, and coefficients used by Scottish Government in their preparation of carbon impact of their own budget decisions (Scottish Government, 2016b)
- Assuming rUK carbon intensity = Scottish, and Scottish and rUK exports have same carbon intensity as supply for domestic consumption, can produce a reconciliation between territorial emissions and the carbon footprint

Scottish Carbon Emissions

	Values (£m)	Associated CO2e Emissions (MtCO2e)	
Production	232,964	47.1	
International Transport		2.3	
Land Use Changes		1.7	
Gross Output	232,964	51.1	Territorial Emissions
rUK Intermediate Imports	28,476	8.6	
International Intermediate Imports	16,588	28.9	
Less Total Intermediates	(105,987)		
Total Final Goods	172,042	88.6	
Exports	(67,931)	(20.8)	
rUK Final Good Imports	19,707	5.3	
International Final Good Imports	13,172	22.3	
National Income	136,991	95.4	Carbon Footprint

- NB Carbon footprint >> Territorial emissions
- Consequence of (a) trade deficit, (b) services dominated economy

Scottish Carbon Emissions

Exercise

- Assume that the 39% reduction in red meat consumption and 3% reduction in other food and drink consumption translates into reductions in expenditures
- Then considering a pure, exogenous, change in consumer expenditures, ΔY, so looking at a Type I Leontief IO modelling exercise
- Carbon impact of this change is $C'\Delta X = C'(I A)^{-1}\Delta Y$
 - where C is vector of sectoral carbon intensity (per unit gross output) coefficients, X is the vector of sectoral gross outputs, and A is the Type I Leontief coefficient matrix
- Then consider 2 extreme secenarios:
 - ΔY = 39% reduction in red meat & 3% reduction in other food and drink expeditures, and 0 for everything else i.e. all savings saved
 - ΔY = 39% reduction in red meat & 3% reduction in other food and drink expeditures, and x% increase in discretionary spending so that all savings are spent
 - Discretionary \equiv not public services, rents, or financial services
 - x is solved for so that overall household spending is unchanged

- This scenario involves only reductions in expenditure, so not surprising that see falls in both emissions and economic activity
 - GDP falls by $\pounds 103m$ (-0.1%)
 - ▶ Employment falls by 3076 employees (-0.1%)
 - Trade balance improves by £145m (-1.4%)
 - Territorial emissions fall by $0.5MtCO_2e$ (-1.0%)
 - ► Carbon Footprint falls by 0.9*MtCO*₂e (-0.9%)

Scenario 1

- Now spending patterns are shifted without the level of spending being reduced, not necessarily see falls in either emissions or economic activity
 - ► GDP rises by £5*m* (0.0%)
 - ▶ Employment falls by 916 employees (-0.0%)
 - Trade balance deteriorates by $\pounds 7m (0.1\%)$
 - Territorial emissions fall by $0.5MtCO_2e$ (-0.9%)
 - ► Carbon Footprint falls by 0.7*MtCO*₂e (-0.7%)

	Values (£m)		Associated CO2e Emission		
Production	232,834	(130)	46.6	(0.5)	
International Transport			2.3	-	
Land Use Changes			1.7	-	
Gross Output	232,834	(130)	50.6	(0.5)	Territorial Emissions
rUK Intermediate Imports	28,436	(40)	8.5	(0.1)	
International Intermediate Imports	16,564	(24)	28.8	(0.1)	
Less Total Intermediates	(105,864)	122			
Total Final Goods	171,971	(71)	87.9	(0.6)	
Exports	(67,931)	-	(20.8)	-	
rUK Final Good Imports	19,754	47	5.3	(0.1)	
International Final Good Imports	13,196	24	22.3	(0.0)	
National Income	136,991	-	94.7	(0.7)	Carbon Footprint

Scenario 2

Conclusions

- Scenario 2 shows very small economic impacts, with a positive carbon impacts (i.e. reduction in emissions)
- This analysis ignores health impacts (reduced healthcare costs and improved workforce productivity) but these will be positive
- Potentially "triple win"? makes policy to achieve this outcome attractive
- Aligns well with the the Scottish Government's aims to create "a more successful country, with opportunities for all of Scotland to flourish, through increasing sustainable economic growth"
- Modelled as exogenous change in expenditures (in a Leontief model with no prices): policies that could achieve this e.g. advertising to change preferences? Very uncertain

Next Steps

- As well as analysing all data used and assumptions made and conducting sensitivity analysis to these
- Implement in CGE model in which policy can be implemented through e.g. tax on red meat
- Part of a wider project to enhance our CGE models with ecosystem services (ESS) and natural capital
 - As well as carbon emissions (and sequestration), other ESS flows include natural imputs to agriculture, fishing, and timber: add to production functions for these sectors
 - How do these additions affect CGE scenario results?
 - Conduct other exercises e.g. reducing these natural inputs (consequence of climate change?) ⇒ impacts on economic output from these sectors and spillovers into wider economy
 - Aim of the overall project is to link ecosystems and economy-wide models to allow us to identify and quantify multiple benefits and the impacts upon, and trade-offs between, national economic indicators and the management of natural assets.

References

- Moxey, A. (2016) "An Assessment of the Economic Contribution of Scotland's Red Meat Supply Chain", http://www.qmscotland.co.uk/sites/default/files/ economic-contribution-of-scotlands-red-meat-supply-chain. pdf
- Salisbury et al (2016) "Greenhouse Gas Inventories for England, Scotland, Wales and Northern Ireland: 1990 - 2014", https://uk-air.defra.gov.uk/assets/documents/reports/ cat07/1606140853_DA_GHGI_1990-2014_Report_v1.pdf
- Scottish Government (2010) "Preventing Overweight and Obesity in Scotland",

http://www.gov.scot/Resource/Doc/302783/0094795.pdf

Scottish Government (2015) "Scotland's economic strategy", http://www.gov.scot/Resource/0047/00472389.pdf

 Scottish Government (2016) "Input-Output Tables 1998-2013 -Latest Year (2013)", http://www.gov.scot/Topics/Statistics/Browse/Economy/ Input-Output/Downloads/I01998-2013Latest

References

- Scottish Government (2016b) "Greenhouse Gas Estimation", http://www.gov.scot/Topics/Statistics/Browse/Economy/ Input-Output/CarbonAssessment
- Scottish Government (2017) "DRAFT CLIMATE CHANGE PLAN: The draft third report on policies and proposals 2017-2032", http://www.gov.scot/Resource/0051/00513102.pdf
- Scottish Government (2017b) "Scotland's Carbon Footprint 1998 -2013", http://www.gov.scot/Topics/Statistics/Browse/ Environment/Publications/carbonfootprint9813
- Springmann, M., Charles, H., Godfray, J., Raynera, M., and Scarborough, P. (2016) "Analysis and valuation of the health and climate change co-benefits of dietary change", PNAS

Plus ...

Reference to the National Diet and Nutrition Survey (data from 2000 to 2001) is from

http://www.nhs.uk/Livewell/Goodfood/Pages/red-meat.aspx