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Abstract: Cracks oftenexist in composite structuresespecially at the intexce of two different
materials.These cracks can signifently affect theload bearing capacity of the structure and lead to
premature failure of the structure this papera novel element for modeling the singular stress state
around the inclined interface cragkich terminates at the interface developed This new singular
element is derived based thre explicit form of thenigh ordereigen solution which is, for the first time,
determined by using a symplectic approathe developedingular element is then applied in finite
element analysis anti¢ stess intensity factors (SIFs) farnumber otrack configurations argerived

It has beenconcludedthat mmposites with complex geometric configuratiasfsinclined interface
crackscan beaccurately simulatetdy the developed methpdccording to compeon of the results
against benchmarks. It has been found that stiffness matrix of the propossthgular elements
independent on the element size dhd SIFsof the crackcan be solved dirdgt without any post

processing.
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eigen expanding coefficients

vector of the eigen expanding coefficients

coefficients of the generakpressiorof eigenvector

diagonal matrix of which the elements are composed of eigenvalues
B=A(x =n )

matrix of the generaéxpressiorof eigenvector

vector of nodal displacements

vector ofthecoefficients A B,C, D

Younmodwusand Poi ssonds ratio

matrix generated from substituting eigenvector thiboundary condition
shearing modulus

second part of the characteristic equation of eigenvector

Hamiltonian opertr matrix

identity matrix

unit symplectic matrix

k=p,a h ¢ d coefficientsin the relationshigpetweenthe eigenvectorsof the
region #1 andheregion #2

ki=a,, c,id, coefficients in the relationshipetweenthe eigenvectors ahe
region #3 andheregion #2

mode | and mode Il stress intensity factors

stiffness matrix of the SASE

characteristic length

positive integers

vectoss of the configuration variableandthe dualvariables

vectoss of trail functions ofthe configuration variables arttie dual variables

polar coordinate system
generalized stiffness matrof the SASE
generalized stress components

trial functions of thegeneralized stress components
matrix of which the elements are values of eigenvector on the export nodes
displacement components

trail functions of the displacement components

vector ofthe configuration variables and dual variables
vector of trailfunctions of the configuration variables and dual variables
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1.Introduction

Composite materialare widely used iwvariousengineeringsectorsdue totheir optimalproperties
compared with a single materi&lowever,it is almost inevitable for the composite materials to possess
cracks or defects,especially at the interfaces between two ijayrmaterials under fabrication process,
environmental degradation, applied loads, &twe cracks can propagate, accumulate and significantly
reduce the load bearing capacity of the struciaréerms of fracture failurePerhaps de to the
mathematical complexitieim formulatingthe interfacecrack most of theexisting studiesin literature
focused ora special case where the crack is along the interéddbe two material& %34 567,89
However, a more general and challenging case in which the crack lies in an angle with the interface and
terminates at the interface should also be sufficiently addreSsex the crack can be treated as being
inclined from an interface crack,is named inclined interface crack in tpeper.

Stress Intensity FactefSIFs) and Energy Release Rates (ERRs) have been widely employed for
guantifying the stress singularity around the crackok studied the stress state arouhd crack
terminatingat the bimaterial interfaceandproposeda fracture criteriorfor crackinitiation 9. Lin and
Mar consideredhe case in which therackwasperpendiculato the material interfacerhey developed
a hybrid element t@alculatethe SIFsandthe ERR$'3. Chenderiveda general expression for the
singular stress field around theclined interfacecrack, and employed the body force method to
calculate the SIFE. In addition, Wang and Pedeveloped a model fogolving the SIFsandthe T
stresses arounddrerack tipd. Lin and Sunf4 and Poonsawadt all' analyzed the stress singularities
of the inclined interface crack anisotropicmaterials.Furthermore Wijeyewickremaet al studied the
stress singularities othe crackterminating at the frictioal interface of monoclinic binaterial

composite89.



Finite element (FE) analysis ipopular in engineerin@pplications;however, if conventional
elements were used, extensive mesh refinement around the crack tip would have been employed to
ensure the awracy of simulatiof”). Different numerical methods have been developed to study crack
problems in engineering including meshfree meth&d® 20 2% 221 extended fifte element method
(XFEM) [23.24.25 26,27.28] " extended isogeometric analygixIA) [2%3031 These methods are used to
calculate SIFs or ERRsr crack problemsvith high solving efficiencyHowever, only a few numerical
methodscan beappliedto inclined crack terminating at bimaterial interfa@auhalaet all?? studied
the inclined interface crack problem by using XFENE stress and displacement enrichment functions
were determinedy considering plane elasticity solution based on Airy functidvetarajanet al
applied the extended scaled boundary fieteement method (xXSBFEM) tihe inclinedinterfacecrack
problem and both SIFs andr stresses were solved numericalithout path independent integhl.
Nasriet al investigated the behavior of tlteackterminatingat the zinc/steel bimaterial intade with
different orientation®y using theFE software packagetBAQUSI®3,

More recently,cohesive crack model is applied to the modeling of the bimaterial interface cracks.
Adamsmodeled therackwhich wasperpendicular tohe bimaterialinterface andound that the critical
value for crack propagation depexbipon the maximum stress of the cohesikeckmodel, as well as
the Dundures paramet&% Mehidi et al investigated therack normal tdhe metal/alumina interface
by determining thel integrd and the plastic zone at the crack tip using the tdmeeensional finite
element method®. Muthu et al. developed a new variant of the eleméee Galerkin (EFGnethod,
and applied this newnethod for theinclined bimaterial interfacerack problem®®. Chang and Jeng
developeda i M0 contour integral for the cracks passing throughtesminating normally athe

bimaterial interfacé”.



For these existing methods in solving the inclined interface crable conventional FE analysis
requires extensivemesh refinement around the crackdipd thesolving efficiency is therefore reduced
XFEM! employs the asymptotic fieldasthe enrichmentio improve the solving accuradyowever,it
is still not satisfactory becausgl) dense meshearound the crack ti@re also required toachieve
acceptableaccuracy(2) the implementatiom the XFEM is very complexThe elementssolatedby the
crack andthe interface should be partitioned into subtriangles for the purpose ofatitegand the
blending eéments are required to conneghe crack tip enriched elemetat the standard elemeniS)
the numerical predictiois sensitive to the numerical integration scheme used for the enriched elements.
In Ref.[27], different integration schemesgere used for different types of elemant.e.,a thirteenth
order Gaussian integration method was used for the subtriaaighescrack tipa sixthorder Gaussian
integration scheme was used for the subtriangtethe crack surface and a sixteeatder Gaussian
integration scheme wassed for theéblending elementdn light of the existing methods in modeling the
inclined interface crackst has been founthat thedescription forthe displacement and strefselds
around thecrack tip is of crucial importancélthough the enrichment terms as well as the standard FE
shape functionare available irXFEM, furtherimprovement isstill desiable Thereforg a combination
of numerical method andnalytical solution which strictly satisfies all the fundamental equations,
compatibility condition and the boundary conditi@ould bring many advantagett. is in this regard
this paper is presented.

In this study, for the first time, the analytical eigen solution ottiraplex inclined interface crack
is derived by using the symplectic methd@hsed on tie obtained analytical eigesolution a new
symplectic analytical singular element (SAS&peveloped for numerical simulatiofhe SIFs are then
calculated directly wthout any posprocessing. It should be noted that the stiffness matrix of the

proposed SASE iproveni ndependent o n.Thishueique featura efrthe 8ASE playz am



important role in ensuring accuracy and stabilitynomericalsimulation. The symplectic approach for
elasticity®® 29 has emerged as a useful tool for the analytical study of singularity problems. By using the
symplectic approach, analytical eigen solutions for diffeceatk problems were obtaingg 4% 42 43 44
451 The rich hformation ofdisplacement and stresiglds around crack tip expressed in terms of
analytical solution auld lead to bettesolvingaccuracy and efficiencyBased on the existing analytical
eigen solutions, a series of analytical singular elements wereoged for the numerical study of
crack$*d, bimaterial interface cra& 41, fatigue crack growt#® and Dugdale model based cratRs
50, These elements were termed as "singular element" or "enrichednéléeméhe early publications
[40, 46, 48, 49, 50]. However, onsidemg the methodology used for consttion of the elemenandits
applications,the new developed elemerits the recent publicationgt7, 51, 52, 53] were termed as
Symplectic Analytical Singular Element (SASH) the future, SASKvill be consisterly used

A few examples are worked outto demonstrate the application d@fe proposed method
Verification of the results against the benchmarks has indicated that the developed model is very

accurate in capturing the stress state around the inclinethogearack.

2.Fundamental equations

Consideing an inclined interface crack terminatingt the bimaterial interfaceas shown irFig.1,
the origin of thepolarcoordinate systerns locatal at the crack tipThe adack orientationis denoted by
g= p- whereW is an arbitrary angle satisfying2 w?20. For a special cas¢he problenbecomes
abimaterial interface crack probléfiwhen w=0 or w= £. The domainis divided intothreeregions

by the crackand the material interfacs shown irFig.1. The subscriptiii 0 (1 =1,2,%) is employedo

represeneachregionThe Youngdés modul ofthe matedal iPthethsegionaréks, r at i

n; . Sincethe regiongtl and#3 are occupied by the material 1 so we h&ye E; and”, = 4. For the



sake of conveniencehe subscripftfii 0 (i =1,2,%3) is omittedin the equatinshereinafter except where it
may cause confusion.
The fundamental equationsf this problemunder the assumption of plane strese briefly

presentedbelow. The equilibrium equations neglectitige body forcecan bespecifiedas follows,
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wheres,, s, andf,, are stress component§he relationship between strain and displacement

specified as follows
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whereé€ , €,, g,, are strain comgnens, while U, andu, are displacements alorrgdial and angular

directionsrespectively The HellingerReissner(H-R) variational principleof the discussed problem is

specified by
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whereg = -p -, 4= -, ¢=0andg,= p- . Assuming that the two materials are perfectly

boundedthenthe compatibility conditiorat thematerial interfacean beobtainedby

ur1=l4,2’ Uql qg2? a 3,27’ r[,lq r:é’ atC/: ',t (4)



U,=Us U, U, S 5 J, I, =L atg=0 (5)
The traction free boundary condition on the crack surfeaese expressexs follows
Spu=fa D, atg= -p - (6)

S,a=te 9, atg= p- (7)
Due tothe mathematical complexities, the problem described al®wifficult to be solved by using
conventional methodsThis studyemploys a novesymplecticapproach by using whichthe origiral

problem is transformed into gmaplectic eigenvalugroblemwhich is then solved analytically

3.Symplectic approach
The symplectic approach for elasticity has been widglgliedfor the analytical study of singularity
problem&® 39, By using this approachhé governing equation dfie original problem is reduced into a
series offirst order differential equati@which isthentransformed into an eigenvalue problem by the
method of separation of variabldhe synplectic approach is employed in this study to solve the eigen
solution of thecomplexinclined interface crackBy introducingthe generalized coordinate
x=Inr (8)

and the generalized stress components

S=t1s, § =rs, o, %t 9)

theH-R variational principleexpressed iEq.(3) can be rewritten as
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Making variationof Eq.(10) with respect toS, gives
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S, = Egeu o O5g (12)

Substitutingeq(11) backinto Eq(10), theequivalentH-R variational principlecan befurther simplified

as follows:
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From Eq.(12)therearefour independent variablas the equivalenH-R variational principlei.e, U, ,
u,, S andS,. Making variationsof Eq(12) with respectiveto these independent variables gites

symplecticdual equationwhich isspecified by

L,
X (13

where Z =[u,, u,, S, $,JT is the unknown vector ofthe configuration variabtep =[u,, uq]T and the

dual variabls =[S, $q]T . Moreover,the Hamiltonian operator matrild is presenteds follows

g -n ,:,E 14 0
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The symplectic dual equatioexpressed ireq(13) can be solved byhe methodof separation of

variables, let

Z(x, §=e"¥( ) (19
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where 7is the symplecticigenvalue and (@) =[x Vv .V ,qV is the corresponding symplectic
eigenvectory,, ¥, , Y, andy, are variables which arerespectively,separated &m the original

variablesu, , u,, S and S, . Similarly, ¥, is denotedas the variable separated frddn. Substituting

Eq(15) back into E(.13), the originalproblemis transformed int@ symplectic eigenvalue problem
presented as follows,

Hy ()= m ) (16)
The eigenvalues of the Hamiltonian operator maktixhave some particular behavior thaaifionzero
eigenvalue/ is an eigenvalue then/7 must also be an eigenvaltfe So thenonzeroeigenvalues are

divided into two groups
(@ n"j=12,3,..Re(? )>0 or, Relrh )=0 and IM(Hm ) (17)
b) AP, j=12,3.., H = % 19
The corresponding eigenvectors are denotedyly’ and y ' | respectivel. The superscript

1=1,2,3,.. is employed to denote thigh eigensolution it will be ignored where applicable fane
sake ofsimplicity. We define thesymplectic inner productbetween two arbitrary vectons the

symplectic spacas
3
s Jﬂ
<Y ¥% > a 0 XT Jdg (19
i=1 "

ed 1| : . : S
whereJ = & | 0o is a unit symplectic matrix for the identity matrixand te values of,, @,, g,
€

and g, have beenlefined abovelt is proven thatf /7is a single root, thethe symplecticeigenvectors

y @ andy ) are mutually adjoint symplectic orthogonal to each &tAernd if /77is a repeated

root, the similar relationshiplso exis#®*8. The mutually adjoint symplectic orthogonal relationship

11



among the eigenvectors are normally used to solve the exact sdfdtidnis introduced here just for
completeness, morketailed discussiorsan bereferred to Ref3g].
By using the generalized stress componehts,compatibility condition at the material interface

expressed ifkEgs.(4) and(5) can be rewritten a®llows,

ur,l = l‘LZ’ l‘b,l :UqZ’ S a :S,a’ rS 1lg r:S,:y at 67 = '/ (20)

U,=Uas U, U Scz s,zr S 2g S, atg=0 (21
The tractionfree boundary conddn on the crack surfacesn be rewritten a®llows,

1= % 9, atg= -p - (22)

S:=S4s 9, atg= p- (23

4.Symplectic eigen solution

As formulated the originalproblemhas beenransformed int@ symplectic eigenvalue problera.g.,in
Eq(16), subjectedto compatibility condition and boundary conditioln solving the eigenvalue
problem,the special case with zero eigenvatunelthe general caswith nonzero eigenvalushouldbe

considered separately
4.1 Zero eigenvalueand eigenvector
For zero eigenvalughe corresponding eigenvect@n be obtained by solving
Hy (g) =0 (24)
Theeigenvectorgan be obtained as follows,
y@=[cos@g) -sin(9 0 0], y®=[sin(g) cos(9 O 0] (29
Obviously, they representigid body transitios along horizontal and vertical directions, respectively.

Besides, it is founthatthe Jordan form eigenvectors exist arah bespecified by

12
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y‘l'”=§1'7”qsin( J 17'” aps( )el—; &in( ) g cos() o (26)
(2"])_é 1-n 1-n . 1 +n . QTQ
v =g qeos(q —7 ()" Cos() § sin() o 27

wherey ®?) andy ®?) are the Jordan form eigenvectors corresping toy ) andy ®, respectively.

Combining the original eigenvectors and the corresponding Jordan form eigenvectors together, the

Jordan form eigen solutiomd the original problencan be determined andgsentedas follows

ZON =y @) ey 7 @) =y @) (@ (28)
It may be noted thathe above Jordan form eigen solutics® concentrated forseacting at the
coordinate origin along horizontal and vertical directions, respygt
4.2 Non-zero eigenvalueand eigenvector

For nonzero eigenvaluethe general solutionf the eigenvectorof Eq(16) for the material in théth

regioncan be solved and specified b
Y,=CD, (i=123) (29)
where the explicit expression of the matrix C; is given in EgA1l) in the Appendix.

D =[A B C D] is the vector ofthe coefficients A, B, C. and D, . There aretotally 12
coefficients in the eigenvecwior the threaegionswhilst only four of them are independefitherefore,
only the coefficients oftheregion #2(A,, B,, C, and D,) are chosems independentoefficients The

relationslip among the coefficients ideterminedthrough the compatibility conditiomt the material
interface as specified in ER0) and (21). Substituting thegeneral solution of the eigenvector &9)

into Eq(20), the fourcoefficients of region #1 can be expressed legdlofregion #2 as speified by

13



éA=apA ta,pB B®pG apDb,
iB=bp,A +b,pB bpG BpD,
1C,=c,p,A €, PB €PG epD,
iD,=d,p,A {d,pB dpG epD

(30

where the expressions of tleeefficientsk,, k,, k,, K, (k=p,a b g d) in the above equians are
given in Egs.(A3), (A4) and (A5) in the Appendix. Similarly, substituting Eq29) into Eq(21) the

coefficients of region #3 can also be representeddsetbf region #2, the relationshgspecified by

eA=aip,A tah G
1B;=bjp,B +bpD
:C,=Gp,A PG
[D;=djp,B +dpp

(31)

in which the expressions of theoefficientskj, ki, kj, ki (ki=a, , c,id) are given in EqA6) in the
Appendix.In this way, theexplicit formsof theeigenvectory ,, ¥, andy ; for the three regionsan be

obtained with only four unknomw coefficientsA,, B,, C, and D,. These coefficientgan then be

determinedn accordance witthe boundary conditioan the crack surfaces.

Substituting tle eigenvectors into tHeoundary condition expressedras.(22) and(23) leads to
F(mD,=0 (32
where the explicit expression of thetnva F (77) can be extracted frofqgs(A7), (A8), (A9) and(A10)
in the AppendixIf D, has nortrivial solution, the determinant ahe matrix F (/7) must vanishi.e,
det(F (/m)=0 (33
Expanding Eq(33) leads tahe characteristic equation of the eigenvalse

sit (mpG( yr 0 (34)

where

14



G(m=[-a +b 1+ Y a)(tbcos2 )? w(lm %)cosp )costnp 2 H
+ (1-b6° )sih (M p-2 WM? b? a% ?ycbs ( )mp

(39
a and b are the Dundurs parameters as specified i(A2)in the Appendix.
The eigenvalue can be solved frdg.(34) which is composed of two partsplving the first part
sin (mp = 0 results in
m= 1, 2, 3°.. (double roo (36)
In general however,the second part dEq.(34) is very complex ana@¢an onlybe solved numerically.
Specially, forthe bimaterial interface crack problem withh=0 or W= £, the expression of5(7) is
reducednto
G(m= bsin’( mpcos ( (37)
For the crack perpendicular to thanaterial interaice( w= 4 2 in this case)the expression o6(m) is
reduced into
G(m=[-a +b2@¢ Yo a) “b(Un ¥)cosb )f (38)
It is found thatthe obtainedexpressionof G(/7) in Eqs(37) and (38) are inline with the existing

result$*d, and this verifies the presemibdel As discussedhe second part oEq(34) is very complex

anda numericalapproach should be adopted to obtain gbkition of the eigenvalue Substituting the
obtained eigenvalue back int6q(32), the nonrtrivial solution of D, can be solved anthen the

eigenvectorsor the three regionare all obtainedhrough Eg.(29), (30) and(31).

5.Stress intensity factorsand T stress
The analytical solutiomf the inclined bimaterial interface crapkoblemcan beexpressed in the form

of symplectic eigen exp®sion specified as follows

15



Z=3a%e My (39)

i=1

wherea" is the unknowreigenexpanding coefficientConsidering thathe strain energyn the vicinity
of the crack tipmust be finite, hence thexpanding terminvolving the negative eigenvaluas given in
Eq.(18) are not included in the aboeggenexpansionBesidesthe specialcasefor concentrated forces
acting on the crack tifs not consideredh the presenttady, and hence the Jordan form eigen solutions
which represent this sp&l caseare alsmeglectedn Eq(39).

In the eigen expansion, the first two terms zeeo eigenvalusolutions (rigid body transitions)
and the subsequetdgrmsmay bring stress singularity #ny ofthe eigenvalue satisk 1>Re(7!’ )> C,
(1=3,4,5,..). The eigen expanding coefficients corresponding to these eigesvare of particular
interestbecause thegre the critical parametevghich reflectthe stress stataround the crack tigror
mostcases, it is found that’® and 71" are the two eigenvalues which bring the stress singularity and
they arealsocomgex conjugatesThe definition ofthe SIFs for inclined bimaterial interface crack in

Ref.[17] is employedn this studywhich can bespecifiedas follows
im{s, +i ¢}, F="(K, iK)gosIm( Fn(r/L)] {6, K )sipim( ym(r/L)]}H} (40)

where f(K,K )= 1K K . It may be noted thahe stresgomponentsn the vicinity of the crack tip

(r- O for this casparedominated by the singularity termsEQq.(39). CombiningEq(39) and Eq(40),

therelationshipbetweernthe SIFs and thexpanding coefficients can be determiyresifollows

K, =220 Rep® L)' ) (- W, K, &2 Red® ()" () (41
Specially,the eigenvalues of thease for bimaterial interface crack/&0 or W= L) can be determined
analytically by solving Eq38) as follows,

/793’(, /‘ﬁ):E 9 e etl—lnl_ b
2 20 1+ ¢

(42)

16



The definition ofthe SIFs forthis case is given !

¢ K, +iK, ar '§1
limjs, +i =1 5 4
r—OJr LR Wﬁg% (43)
In addition,the relationshifpetweerthe SIFs and the eigen expanding coefficients are
K, =2J20 Ima® (2L)° y, ()], K, =a/2 Ref® (2)°, y(0) (44)

For the case where the crack is peqgienlar to thebimaterial interfacé w= g2), it is proven that?®

and m* are both real numbes. In this case,te definition ofthe SIFS!™ as well asthe elationship

betweerthe SIFs and the eigen expanding coefficiezan bespecified by
. . . "3
limis, +i (Jq:% £K, iK)r 1} (45)

K, :a(3))/f’( -42) &Y jg‘)( B, K, a% ,(Sy 12y a® r#“)l;y 12) (46)
It should be pointed thathe SIFs can be calculated direatiithout any posprocesingonce the eigen
expanding coefficients are obtained

Apart from the SIFs, the other higher order eigen expanding coefficients ad sigmrtance in
determining the stredeld at a distance to therack tip.For examplethe expanding coefficientg®
and a® actuallyform a constant stress field along the horizontal directitso f@own as thel stress)
since the corresponding eigenvalues aré= /1 = (double root).These expanding coefficients have
been widely used in explaining physical phenorfi@h&ence, determining these unknowns is necessary
in analyzing the inclined crack problems. The proposed method can solve these unknowns directly
without any postprocessing, providing a deep insight into the stfie$s of the inclined interface crack.

To the best of tthese hasinot heerr asdétailed stody évaliciting these higher order

expanding coefficients.

17



6.Symplectic analytical singularelement SASE)

Conventionalfinite elements areausually not precise enougto representthe nature of thestress
singularity around the crack tiporeover,the results are still unsatisfactogyen though refirsemesh
around the crack tips used This is becauseahe interior fields oconventionaklements aréefinedby
usingregularpolynomials whichcannot represeribe singularstressfields distributed around the crack
tip properly As statedin the previous secti@n the exactsolution of the stres and displacement is
formed from the eigen solutiairoughthe symplectic eigen expansion definecEim(39). Hence,the
symplectic eigen solution is the best choice to represeritelde aroundhe crack tipand assuchthe
shortcominggfor regular polynomialscan be overcome natalty. Motivated by this, weproposethe
SASEasshownin Fig.2. Of this novel elementhe interor fields areformedfrom the symplecticeigen
solution obtained aboveThe area aroundhe crack tip is occupied by the preseitcular SASEwhile
the other areaf the structuras meshed by using conventional elemefitse radius of the SASE is
denoted by . The presenSASEis connected with theurroundingconventional elements through the
"export nodes" which are evenly distributed on the element's circumferéheenode ndexes are
arranged from 1 tdN, and the number aéxportnodes is not liméd to a specific value, more export
nodes will benefit the solution accuracy.

Assuming that the displacement and stress fields of the A& the form of

Z' <[44, $. 8] %1 @ ey @7

*

The variablesu, , U,

, S and qu in the aboveequationcan beregarded as the trial functisof the

displacements and generalized stressesa n d t h e * csisuuped todifferentiapetrom fiheexact

solutions Rewriting thetrail functionsin Eq.(47) in form of matrix gives

p=[u,ul @A, q=[S,§] YA (49)

18



where a=[a®, a?,...a™’]" is the vector of the unknown expanding coefficientgmd the matrix
A:diag(e””, ew’,’..., e(M*)j is the diagonal matrix of which the elements are composed of the

eigenvaluesp andq are vectors of trail functions ohé displacements and generalized streSdes.

elementsof the matricesi and U are extracted fronthe eigenvectorsand they arespecified as

follows

0 =200 PO )00

§99, $()1a 9% )q™ ) “9

U_é;/f“(a, Y()a% )" )

50
&9 a9, £0)a.°¢)-a."0) (50)

Substitaing Eq(48) back into the equivalemi-R variational principle E¢12) andconsideringhat
the trail functions have satisfied all the reqments ofthe fundamental equationand the boundary

condition at the crack surfagake equivalent-R variational principle can be furtherly simplified into

.~91+1 N p (i

Hln r q g (51)
u

('D>

The deformation energy of the SASEcan beextractedfrom the above variational principlend
specified by

U=08a"A RA: (52)

x=In r
where R is the generalized stiffness matrix of the SA&& specified by

3 j*1 4~ |
R=84 ) @) Udg (53
=

In this way, the proposed SASEr modeling of the inclined bimaterial interface craslconstructed
However, from Eq52) it can be seen thalhe unknowrs to be determinefbr the SASE in the current

form arethe eigen expanding coefficientBecausef the mismatch othe unknowndetween the SASE
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and conventional displacement elememftansition elements are required to connect the SASE to the
conventional elementsnd this will bring inconveniercin the implementationin fact this drawback

can be overcom@ndthe details arentroducedn thefollowing section.

7.Discussiors on the SASE

7.1Displacement based form of the SASE

Denoting d =[u®”, u”,...u%"1" as the vector ofthe nodal displacemets where u” and u”

(]=1,2,.M) are the displacement componentste jth export node of the SASH:. may be noted

thatthe coordinateof the jthexport node of the SASE under the polar coordinate syatefr, ¢).

Hence, the nodal displacement ceasily be determinedy substituting the coordinatds, ¢) into
Eq.(48). Thereforethe following relationship can kebtained

d=[u®, Lgl),...u(g“]T =,Ba (54)
where B=A(x #n ) andthe elements of thenatrix T, are values of the eigenvector on the export

nodes, specified aslfows

¥yO(9 P ) a. D)
L@ Pl ) g o)
v 8

(59
U@ PCa e 0
From Eq(54), the vectora can be expressed loy as
a=B"'T,d (56)

In the above equation, inder to get the inverse of the matilix which is aM by 2N matrix, it is

necessary to ensure thgtis a square matrix, e.g4 =2N. For his purpose, once the numbertbé

export nodes of the preseBASE is chosen to bé\ , then the number dhe expanding term$/ in
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Eq.(47) should be2N . Substituting Eq56) into Eq(52) and noticng that AB'*=| whenx=In /
gives
g=08,T R (57)
Thusthesstiffness matriof the SASE can be specified by
K=T,"RT," (59)
The nodalunknownsof the SASEare nodaldisplacemerst and hence it can be connected with

conventional displacement elements directly without aagsition elementUnlike the XFEM?, the

proposed SASE does not introduce any extra degree of freedoms (DOFs) on the export nodes.

7.2 Size independent stiffness matrix
Thereis infinite number of expanding ternmis the analytical solution defined Bq.(39), whilst in
practiceonly a finite numbercan be selectem the trail functiondefined in Eq48). It is conceivable

that choging more terms wilimprovethe representation diie trail functionHowever, thecomponent

g”’in 7 contained inthe higher orderexpanding terms could result i@ huge number when the
eigenvaluem” is very lar@. As a resity significant numerical errocould beinduced Yet, in the

proposedSASE sucha risk is avoidedhaturally because”’ 7 is eliminatedin the formulation ofthe

stiffness matrixK defined in Eq58). Apparently this novel propertyof SASE is beneficial to the
stability and accuracy of theroposedmethod, especially when higher order eigen expanding terms are
used.

Furthermoreit can be seefrom Eq(58) that the stiffness matrix of the SASE is independent on its
radius 7 . In other words, the proposed SASE is a size independent eldtra@st. meanshe stiffness
matrices of different SASEswith different sizes arghe same and they shouftbt be calculated

separatelyor repeatedly in the calculatiomsteadthe stiffness matrixan be calculated in advance and
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be used for all the SASEs with different sizkging the calculationAnd thisis particular efficient in
the modding which involvesrepeated calculations such aparametricstudy on crack lengthn those
casesthe size of the SASE around the crack tip keeps changing dtlmmgipdating of the medio

matchthe changingcrack length.

7.3Integration of the stiffness matrix

From Eq(53), it can be seen that the integratfonthe stiffness maix of the SASE which is a two
dimensional(2D) element is transformed into a edenensional(1D) integration.Besides as all the
components of the eigenvectare explicitly avaiableg the integration in E¢3) can be doae
analyticallywithout any difficulty Because the SASis a circularelementso here exist overlapping
areas with the connecting conventional eletgeas shown inFig.3. The contribution to the global
stiffness matrix from the overlapping arsaduplicatedwhich leads to over estimation othe global
stiffness matrixof the FE systermand will introduce numerical erroitheoretically, the area of the
overlapping region will be reduced to zero when infinite numbers of exporting nodes are used for the
SASE. However, only finite numbers of expaodes can be used in practice and the overlapping area
cannot be avoidedNeverthelessin the previous studies for the crack problemsas proven thatthe
resulted numerical error can be limited when sufficient numbers of the export nodes of ther®ASE
used[40, 46, 47]. It was shown that the numericatror of the predicte@®IFs with respect tothe
analytical solutionwas-1.2% and-0.5% when 13 and 25 expat nodeswere usedrespectively(40].

Hence, in this study 25 export nodes are used to ensure the accuracy of the prediction.

7.4 Calculation of the SIFs and the solving procedures

By assembling the stiffness maws of the SAS& and conventionalelementsinto the global
stiffness matrix, the original problem can be solved numericAftgr solving the global equation, the

nodal displacements of the SAS&an be obtained, and the SIFs can be calculated directly according to
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Egs.(56) and (41). Unlike other methods, the complex ppsbcessing is unnecessary in fpreposed

method.The solving procedure is illustratedig.4 for the convenience of readers.

7.5Summary
In the aboveliscussionsa SASE haveen constructed for the moubgj of the inclined bimaterial
interface crack problepand the new features tife proposed SASHEclude
The SASE is a displacemefiased element which can be conedcto the surrounding
conventional elements directly without any transition eleméinlike the XFEM, the
proposed SASE does not introduce any extra degree of freedoms (DOFs) on the export
nodes.
fUnlike XFEM or other relad methods, the interior fields of the present SASE are represented
only byusingthe eigen solutions. Andh¢ stiffness matrixan be calculated analytically and
the solving accuracy is therefore improved.
The stiffness matrix is independent on the elensre and this feature is beneficial to the
numerical efficiency and stability.
fiThe SIFs can be calculated directly without any {postessing.
However, the crack and the material interface must be meshed explicitly in the model, and

remeshing is requrikif crack propagation problem is studied.

8.Numerical examples

Example 1 Considering a edge cracked bimaterial plate under tensile loading as shokg.9n
in which the FE meshbf the platas also providedTheratioof t he Youngdés modul i
is denoted by? = E,/ E,. According to the previous study, a total of 25 export noded the SASE are
usedin all the numerical example® ensurdhe solving accuracyAnd it implies that the first 50 eigen

expanding terms are selected in the construction of the SA&Epredictions on theon-dimensional
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SIFs for different crack lengths arksted in Tabl, ard the numerical results of Ref][obtained by
using BEM are listed for comparison. It is found that the present results agree well with theselpf Ref.|
and hencehe present method is validaté€gionsidering that the numerical results might be affected by
the size of the SASE, we take the special edsere/7 =2 anda/W =0.1 as an example to study the

i mpact of tell entHe soviBgbascuracy. The present predictions as well as the reference
results! on K, and K, are shown inFig.6, it is shown that the present predictions are stable and

accuracy under a large rangetbé elementsize and the reasofor this satisfactory performandes
been explained in the secti@2 The contours of the stresses around the crack tip are shdwmnnin

which the stress concentration can be easily observed.

Example 2 Consider a square plate composed of two materials as shdvg.8nthe geometric
parameters aré/ =20 anda =1. The plate is subject to the tensile loading witf E, ands, = E,.

There are two crack tips this model, andoth of them are meshed using the present SASmay
noted that the crack at the poiBtis a single material crack, and the formulation of the SABEhis

problemhas been reported in Refg. The present numerical predictions and the reference results of the

nondimensional S”:S/EK, /(syal'”g) for the crack tipA and B are, respectivelyljsted inTab2 and

Tab3. For the crack tipA, the eigenvalue which brings the stress singularity is denoted laypd also

listed in Tab2. Again, goodagreementare found betweethe presenpredictionsand the reference

resultsfrom Refs[LO, 11, 13].

Example 3: Consider the4Amm3 4mmr bimaterial square plateontaininga crack terminating at

the interfaceas shown irFig.9, the material properties arg, = 73GP¢, n,=0.17, E, =206GPz and
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n, =0.3. The magnitude of the tensile loadingds =1MPa. By using the SASE around the crack tip,

the SIFs are predicted for different crackeotations and the results are listedrab4. The numerical
resultsobtained by usingxtrapolationrmethodon the FE results with extremely refined mesh reported
in Ref.[17] are listed as referenceAccording to the comparison, the present results agree very well
with the reference resultMoreover, the computing cost of the present method is much more cHeaper.
Ref.[17], the eight node plane element (quatdt element)s employed and a total of 382640 nodes are
used in the mesh. But in the present stuldg four node plane element (linear elemant) a SASE are

usedand onlyl425nodes are used in the mesh

Example 4: Consideing the double edge craate80mm? 80mm bimaterial plate as shown in
Fig.10, the magnitude of the tensile loadingsig, =IMPa. The rati o of the Young

materials is denoted by=E,/ E. The present predictionsf the SIFs for different crack orientations

are listed inTabb, Tab6 andTab.7. The numerical resultsf single material case obtained by using the

guarter point singular elemeintthe ANSYS software are also provided for comparison.

Example 5 Considering the structure as showrFig.11, the geometric parameters ajigen by
W =20mm and a = 6mm, and the magnitude of the tensile loading ig =1MPa. The Poisson's ratios
of the two materials arg,= #=0.2.The r ati o of itohthe tw materiais & slenoten dyu |
h=E,/E. Numerical results of the SIFs for crack the fipand B are, respectively, listed ifiab8

and Tab9. Different crack orientations witly=30, 45° and 90° are considered, and the values of
crack orientation angl& are specified in the hckets in the tables. It is interesting to find that with the

increaeof t he Youngb6s modul i rati o, the SIFs of th
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decrease. This prediction implies thhe inclined interfacecrack is attracteto propagatetowardsthe
stiffer materialwhich is bounded torelatively softer material And this trend is also affected by the
inclined angleof the crack, e.g.the variation of the SIFs isignificant when =90 but remains
relatively sm#d when =30 . The numerical predictionould be used for the structure optimization of
compositematerialfor the case where the cramndsto propagate intdhe stiffer material, for example,
to releasecertainhealing agent embedden thecomposite materialt should be noted thahis is not

within the scope of the present stuayd hence has not been addressed in this .paper

9.Conclusion

In this study, the inclined interface crack problemcompositehas been investigated systdivally

from theoretical and computational aspeBg using the symplectic approadhe eplicit forms ofthe

eigen solutiorfor the inclined interface crackere derivedor the first time The stress intensity factors

(SIF9 for the cracks along, pemeicular to, and inclined to the interface were determined. Moreaver,

new Symplectic Analytical Singular Element (SASE) has been develdy@sgéd on the obtained
symplectic eigen solution. It has been found that the composites with complex geometguaratiofis

could be analyzed numerically by using the proposed SASE. In the worked examples, the first fifty
symplectic eigen expanding terms were selected in the SASE to capture the stress state around the crac
tip. Furthermore, the comparison betweenphesent results and the benchmarks has indicated that the

developed model is very accurate in capturing the stress state around the inclined interface crack.
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11 Appendix
The expression of matri€ (in this case the subscriptis omitted for anplicity) in the general
solution of the eigenvectas specified by

e , 3-n-m-nm
geos[(1+ m) q sin[(1 + Jn]q cos[1 - ) 4 q —— sin[l -) | m
3-n +m+nm

e

é 3-n +m+nm

g sinld +m) q cos[(1 +)m]q ——sin[l  } mqos[@ )-]1mgqg
3-n-m-nm

C=¢6 (Al

GEm Em. E@ )m E 3m)

& cosl+m)q ——sin[A+ ]g ——————cos[( - ) pp Q—SIt(l m &

é1+m 1+m 3 -n-m-nm -n+ mtnm

e6EmMm . Em E @ )m. E@Qm) m

——sin[l+m) § ——cos[(l+ ]lg————sin[l - ) I g ————— cos[L ) ]

B1+m 1+m 3 -n-m-nm 3 -n+ m-nm

It is proven that the matri< still remains unchanged whemn=1.

In order to simplify theexpressions, weedine the parameter§ =E,/ E andg=( 7-3)/(1 +)
andintroducethe Dundurs parameté¥s

:Gl(k2+1) 'Gz(/f :H) b:G1(k2'1) 'Gz( /f l)
Gk, +1) G,( 4 B’ Gk, +1) G,( £ B

(A2)

The coefficientsA , B;, C, and D, in the eigenvector of regionl#an be expressed by those of region

#2 with the followingcoefficients

(m)(L+y (1 (1 ¥h (1 g2 ) +n o (1 )(%n)

) P vy 0 e’ Lm oy O

P, =

€a, =(1 ) - a Jtog2 (P )+ga, =n{ a- Jsing2 (b ) @
ib,=m a- Jsing2 (@ +) g %Jbiz(l ) 1 a Jeoa2 (P )+
co=(m+d( a-)os2 )mp b= Am Y a )@z )mp
(d,= {m 9 asn(2 )mp {4, (= )¢ ryce 20b) m

(A4)

—_—— =) — —) —
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G, -gui(a b (+a)pdz Jop+ &0 & hla by m
gbf@'ﬁ(a')b(' a}gn(2 )mp ?,, X m)4 b) cefg2n) 2 mp
fo,=(m+d{t )b {m Acof2 (1 A} pmol o) a)sbl2 (13 m

id=n( m ) a)st[2 (1p)] m g, (= e 9 b +)owba(v)]

(A5)

The coefficientsA;, B,, C; and D; of the eigenvector of region #3 can be expressed by those of region

#2 with the followingcoefficients

ca=(1 ) - a )b S=gi(a -p(+a)g2 +
+9( a- )b fo=(m+9gdg -)b {m a-ef
b) Hha )b pi=gri(a- p( a}g2+

(9-M a)b ai=(m 94 o (+m 3+

(1
Ef] (A6)

I Q2
1

—— — ——)—>(D

bdj

Substitutig the eigenvectors into the boundary conditions(28).and(23) gives
-cosg(1)(p +h@.p.A apB agG anpD,
+sing(1 +m)( p +F@) PA b B bHG bpD,
Lem p REPA DB c9G c D, a0

a a'% d+bp ﬁ d+9 % d 'IBhIQ)h O

sing1+m( p+ p@.p.A &P B 2pG apD),
+cog(1+)( p +R@.pA b B bHG bpD),

’”sin@(l-rr)(p +R@E.P.A B c9G cmD), (A8)

p +a@.p.A dyp B dipG dpp, C

-cog1)(p -h@ir.A apG) sin(& ) p) (d@iB bpB,

A9
C1+m ip.A o C) 1_;”75%(@ )m p) (@geiB, d p8), *
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-singLn)(p -B@ir.A apG) cos(& ) p) (2@iB bpA,

-;;m/%inél'”?(/? REiP.A CcpG) %mc%(g ) o) (dgniB, d p8), !
(A10)

Obviously, thecomponents of the matrik (/7) in Eq(32) can be extracted frofaqs(A7), (A8), (A9)
and(A10) without any difficulty However,consideing that theexpressiorof the matrixF (/7) is very

large it is left to the readers.
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Fig.2 The configurationof the Symplectic Analytical Singular Element (SASE)
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Fig.3 The overlapping areas between the SASE and conventional elements
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Fig.4 The solving procedure of the SASE
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Fig.5 The configuration of an edge cracked bimaterial plate and the FE mesh
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Fig.6 Variations of the predicted SIFs with the size of the SASE
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Fig.7 Contours of thestress components in the vicinity of a bimaterial interface crack tip
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Fig.8 The configuration of a bimaterial plate containing an interior crack normal to the interface and the FE mesh
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Fig.9 The configuration of a bimatial plate containing an interior crack terminating at the interface and the FE mesh

O..W
F 3 A
Y 11T T
Z |
o H |
a unm
=5 NS
o
L Crack
R (4)]
o z
o0
o
=5
o] ]
— | |
[ ] N o
'_\ 1 { ~
w W —H n
| L
h 4 7T I
A J A\

Fig.10 The configuration of a double edge cracked bimaterial plate and the FE mesh
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Tabl Numerical predictions of the natimensional SIFs for the cracked bimaterial plate

h alW K /s N @ K /s N @
Present Miyazaki? Present Miyazakit!
0.1 1.190 1.195 -0.130 -0.129
> 0.2 1.364 1.367 -0.137 -0.137
0.3 1.652 1.659 -0.158 -0.158
0.4 2.101 2.110 -0.197 -0.198
0.1 1.198 1.203 -0.198 -0.197
3 0.2 1.364 1.368 -0.207 -0.207
0.3 1.650 1.656 -0.238 -0.239
04 2.097 2.105 -0.297 -0.298
0.1 1.204 1.209 -0.241 -0.239
4 0.2 1.365 1.368 -0.251 -0.250
0.3 1.648 1.654 -0.288 -0.288
04 2.093 2.101 -0.358 -0.359
0.1 1.225 1.229 -0.342 -0.340
10 0.2 1.366 1.369 -0.350 -0.349
0.3 1.643 1.648 -0.398 -0.399
0.4 2.083 2.090 -0.492 -0.494
0.1 1.247 1.251 -0.428 -0.424
100 0.2 1.368 1.370 -0.430 -0.428
0.3 1.638 1.642 -0.484 -0.485
0.4 2.073 2.078 -0.595 -0.597
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