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Abstract. The purpose of this work is to approximate numerically an elliptic partial differ-
ential equation posed on domains with small perforations (or inclusions). The approach is
based on the fictitious domain method, and since the method’s interest lies in the case in which
the geometrical features are not resolved by the mesh, we propose a stabilised finite element
method. The stabilisation term is a simple, non-consistent penalisation, that can be linked to
the Barbosa-Hughes approach. Stability and optimal convergence are proved, and numerical
results confirm the theory.

June 27, 2017

1. Introduction

This work is devoted to the finite element approximation of elliptic problems in domains
containing small perforations. More precisely, our interest is to approximate an elliptic partial
differential equation posed on the domain ω := Ω \ ∪Ni=1Bi where Ω ⊂ R2 is a polygonal open
domain, and N ∈ N. Each Bi is a closed simply connected domain that can be, a priori, of any
shape and size (see Figure 1 for a typical case). We also denote γi the boundary of Bi. The
problem of interest reads as follows: Find ũ : ω −→ R such that

(1.1)

 −∆ũ = f̃ in ω,
ũ = gi on γi , i = 1, ..., N ,
ũ = 0 on ∂Ω,

where f̃ ∈ L2(ω) and gi ∈ H
1
2 (γi) for all i = 1, ..., N . The restriction to Dirichlet boundary

conditions is of importance, and, another type of boundary conditions, e.g., Neumann boundary
conditions, would lead to a different approach. Nevertheless, our motivation is to use a method
like the one proposed in this work to approximate a problem like (1.1), but in incompressible
fluid mechanics, i.e., solving a Stokes, or even Navier-Stokes, equation. In such a case, Dirichlet
conditions posed on each one of the perforations are the typical ones.
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2 G.R. BARRENECHEA AND C. GONZÁLEZ

Figure 1. Physical domain ω, fictitious domain Ω and inclusions Bi (left). On
the right, the curved triangle Tij used in the proof of Lemma 3.1.

We now present some notation that will be used on what follows. We adopt the standard
notation for Sobolev spaces (aligned with, e.g., [10]). In particular, for D ⊆ R2, H1(D) (H1

0 (D))
will denote the space of (generalised) functions of L2(D) with first derivatives also belonging to
L2(D) (and that vanish on ∂D). The inner product on L2(D) is denoted by (·, ·)D, its associated
norm is denoted by ‖·‖0,D, and the norm (seminorm) in H1(D) is denoted by ‖·‖1,Ω (| · |1,Ω). We

keep the same notation for vector-valued functions. The space of traces of functions of H1(D)

on ∂D is denoted by H
1
2 (∂D), its dual with respect to the L2(∂D) inner product is denoted

by H−
1
2 (∂D), and the duality pairing between them is denoted by 〈·, ·〉∂D. Their norms are

denoted by ‖ · ‖− 1
2
,∂D

and ‖ · ‖ 1
2
,∂D

, respectively.

In this work we follow the approach described in [13] for fictitious domain methods (the
description in that work is for a problem posed in a slightly simpler situation than the one
described here, but the extension of their results to our situation is straightforward): we first

introduce an extension f of f̃ to Ω, and state the following mixed problem: Find (u,λ) ∈W :=

H1
0 (Ω)×ΠN

i=1H
− 1

2 (γi), where λ = (λi)
N
i=1, such that

(∇u,∇v)Ω −
N∑
i=1

〈λi, v〉γi = (f, v)Ω ,(1.2)

N∑
i=1

〈µi, u〉γi =

N∑
i=1

〈µi, gi〉γi ,

for all (v,µ) ∈ W , µ = (µi)
N
i=1. This weak problem was proposed as an approximation of (1.1)

in [14], and the method was later analysed in [13]. In fact, (1.2) is proven to be well-posed in
[13], and it is linked to (1.1) as follows: if (u,λ) satisfies (1.2), then u|ω satisfies (1.1), and the
Lagrange multipliers λi satisfy λi = J∂nuKγi , for i = 1, ..., N , where JvKγi stands for the jump of

a function v across γi (see [13] for details).

To discretise (1.2), we introduce Th, a regular triangulation of Ω built using triangles K with
diameter hK , and h := maxK∈Th hK . Additionally, each γi is partitioned into a different mesh

γi,h̃ with curved edges ẽ, where h̃ := max |ẽ|. Associated to these partitions, we define the
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following finite element spaces:

Vh = {vh ∈ C0(Ω̄) : vh|K ∈ P1(K), ∀K ∈ Th},
Λi,h̃ = {µ

h̃
∈ L2(γi) : µ

h̃
|ẽ ∈ P0(ẽ), ∀ẽ ∈ γi,h̃} for i = 1, ..., N ,

Λh̃ = ΠN
i=1Λi,h̃.

The order of the finite element spaces is the same one as in [13]. As a matter of fact, most, if
not all, the work in fictitious domain approaches focuses in low-order approximations. This is
due to the fact that, even in the case ω is a smooth domain, then the solution of (1.2) is not

smooth. In fact, each λi belongs, at least, to L2(γi), but in general we only have u ∈ H
3
2
−ε(Ω),

for any ε > 0, unless the extension f is chosen very carefully, (see [13] for a discussion on this,
and the recent work [11] for some recent results on how to circumvent this problem using an
optimization approach). In the original paper [13] the pair Vh × Λh̃ was proven to be inf-sup
stable only if |ẽ| ≥ 3h, for every edge ẽ in every γ

i,h̃
. This condition is not only sufficient, but

also necessary for stability (see [3] for a numerical experiment confirming this fact). Then, in [3]
a local projection inspired method was proposed to circumvent this restriction. The first step
of the latter method was to identify an inf-sup stable subspace of Λh̃, and project the discrete
Lagrange multipliers onto it. Then, even if the restriction on the meshes was not necessary for
the stability and convergence, at least the existence of a macro-mesh that satisfied it was needed.
Other approaches have also been proposed in the recent years to avoid this restriction, such as
using cut elements as in, for instance, [5, 6], XFEM approaches as in [20, 16], the fat boundary
method [19, 4], or non-boundary fitted meshes (see, e.g., [22]).

This work focuses on perforated domains., i.e., domains with holes (or inclusions) that
are smaller than the characteristic mesh width. In our case, this amounts to stating that
diam(Bi) << diam(Ω), and in turn, this will imply that, in most cases, |ẽ| < h, which is pre-
cisely the case not allowed in [13]. Over the years many authors have proposed solutions to this
problem. One alternative is the Composite FEM method, see, e.g., [15], where the geometrical
features are included in the finite element space, thus proposing a method whose dimension does
not necessarly depend on the number of geometrical inclusions, see also [21] for the application
of the same idea to the Stokes problem, and [12] for an adaptive strategy associated to a discon-
tinuous Galerkin version of this method. Alternatively, the geometrical features of the domain
can be taken into account at the mesh generation step. This idea is at the basis of some recent
developments on discontinuous Galerkin methods on general polyheadral meshes (see [7], and
[1] for a recent review). Finally, it is interesting to mention the approach described in [18] (see
also the references therein for an extensive review of this type of approach), where a multiscale
problem on a domain with inclusions has been approximated using a multiscale finite element
approach based on the enrichment of the Crouzeix-Raviart method with bubble functions.

The purpose of this work is to propose a simple alternative to the above-mentioned approaches.
As we stated before, each one of the Lagrange multipliers satisfies λi = J∂nuKγi . Then, a natural

idea is to penalise the difference between the two, adding a least-squares term, very linked to
the method of Barbosa and Hughes (see [2], also applied in the context of fictitious domains in
combination with an XFEM approach in [16]). This idea, although natural, leads to technical
difficulties on the error analysis of the resulting method (see Remark 3.3 below for a discussion).
Then, we propose a simpler presentation leading to a non-consistent method, but whose error
can be proven to be of optimal order. This simpler alternative is also easier to implement, and
modifies only one of the blocks of the finite element matrix, thus avoiding any extra couplings
between the unknowns. Also, it is worth mentioning that since the finite element spaces for u and
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λ are independent considering a larger space Λh̃ is allowed. This provides a better (although,
still weak) imposition of the boundary condition u = gi on each γi.

The rest of this manuscript is organised as follows. In Section 2 we present the method,
and prove its stability. The error analysis is presented in Section 3, some numerical results are
presented in Section 4, and some conclusions are finally drawn.

2. The stabilised formulation and its stability

We now propose the stabilised Finite Element method considered in this work: Find (uh,λh̃) ∈
Wh := Vh ×Λh̃ such that

B
(
(uh,λh̃), (vh,µh̃)

)
= (f, vh)Ω −

N∑
i=1

〈µi,h̃, gi〉γi ∀(vh,µh̃) ∈Wh,(2.1)

where

B
(
(uh,λh̃), (vh,µh̃)

)
= (∇uh,∇vh)Ω −

N∑
i=1

〈λi,h̃, vh〉γi −
N∑
i=1

〈µi,h̃, uh〉γi −
N∑
i=1

h〈λi,h̃, µi,h̃〉γi .

We define the following norm

‖(vh,µh̃)‖2Wh
:= |vh|21,Ω +

N∑
i=1

h‖µi,h̃‖
2
0,γi ,

and prove next the stability of the method, whose proof follows directly using the definition of
the bilinear form B.

Theorem 2.1. For all (vh,µh̃) ∈Wh, the following holds

B
(
(vh,µh̃), (vh,−µh̃)

)
= ‖(vh,µh̃)‖2Wh

.

Then, problem (2.1) is well-posed.

The next result states the consistency of the method for smooth solutions.

Lemma 2.1. Let (u,λ) be the solution of (1.2) and (uh,λh̃) ∈ Wh be the solution of (2.1).
Then

(2.2) B
(
(u− uh,λ− λh̃), (vh,µh̃)

)
= −

N∑
i=1

h〈λi, µi,h̃〉γi ,

for all (vh,µh̃) ∈Wh. Moreover, if u ∈ H
3
2

+ε(Ω) for some ε > 0, then

(2.3) B
(
(u− uh,λ− λh̃), (vh,µh̃)

)
= 0 ∀ (vh,µh̃) ∈Wh .

Proof. From the definition of B, and the fact that (u,λ) solves (1.2) and (uh,λh̃) solves (2.1),
it follows that

B
(
(u,λ), (vh,µh̃)

)
= (∇u,∇vh)Ω −

N∑
i=1

〈λi, vh〉γi −
N∑
i=1

〈µ
i,h̃
, u〉γi −

N∑
i=1

h〈λi, µi,h̃〉γi

= (f, vh)Ω −
N∑
i=1

〈µi,h̃, gi〉γi −
N∑
i=1

h〈λi, µi,h̃〉γi

= B
(
(uh,λh̃), (vh,µh̃)

)
−

N∑
i=1

h〈λi, µi,h̃〉γi ,



FICTITIOUS DOMAIN METHODS ON PERFORATED DOMAINS 5

which proves (2.2). Now, if u ∈ H
3
2

+ε(Ω), then λi = J∂nuKγi = 0, for i = 1, ..., N , and (2.3)

follows from (2.2). �

3. Error analysis

We start this section by making various assumptions on the meshes and inclusions. First,
we will suppose that the inclusions Bi satisfy dist(Bi, ∂Ω) ≥ h/2. This assumption will be
needed on what follows, and, although it may seem restrictive, the factor 1/2 can be relaxed to
any positive constant, as long as it is fixed. We will also need to include an indicator of how
”clustered” the inclusions are. For this we start defining, for every i = 1, ..., N , the local annular
neighborhood B̃i by

(3.1) B̃i := {x ∈ ω : dist(x, γi) ≤ h/2} ,

and make the following assumption: There exists a constant M > 0, independent of h and
diam(Bi), such that

(3.2) #{B̃i : B̃i ∩K} ≤M ∀K ∈ Th .

We will finally assume, just to simplify the presentation, that the inclusions Bi are convex.
This latter hypothesis is made only for simplicity, the same results are valid, up to minor
modifications, if this does not hold.

We start the error analysis by stating the following local trace inequality. The proof of this
result is similar to the one given in [8] for the case of curved elements.

Lemma 3.1. Let B̃i be the neighbourhood defined in (3.1). Then, for every v ∈ H1(Ω), the
following local trace inequality holds

(3.3) ‖v‖20,γi ≤ 8
(
h−1‖v‖2

0,B̃i
+ ‖v‖0,B̃i

‖∇v‖0,B̃i

)
.

Proof. Let v ∈ H1(Ω). We split γi = ∪Rj=1γ
j
i , where the γji are disjoint, and introduce a collection

of points xji ∈ Ω \Bi (see Figure 1) such that

(3.4) dist(xji , γ
j
i ) =

1

2
h and (x− xji ) · n|γi ≥

1

4
h,

for all x ∈ γji . Using these points, we build the curved triangle Tij as depicted in Figure 1

(right). Let m(x) = x − xji . In addition, we choose R (the number of subdivisions of γi) large

enough so ‖m‖∞,Tij ≤ h. Then ∇ ·m = 2, and m · n = 0 on ∂Tij \ γji , and Green’s Theorem

yields

(m · n, v2)
γji

= (m · n, v2)∂Tij = (∇ · (v2m), 1)Tij = 2‖v‖20,Tij + 2(v,∇v ·m)Tij .

On the other hand, from (3.4) we have m ·n|
γji
≥ 1

4h. Then, applying Hölder’s inequality to the

last expression, and the fact that ‖m‖∞,Tij ≤ h, we arrive at

1

4
h‖v‖2

0,γji
≤ (m · n, v2)

γji
≤ 2‖v‖20,Tij + 2h‖v‖0,Tij‖∇v‖0,Tij .

Then, for each γji the following holds

‖v‖2
0,γji
≤ 8h−1‖v‖20,Tij + 8‖v‖0,Tij‖∇v‖0,Tij .
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Hence, adding over j = 1, ..., R, using that the curved triangles Tij are disjoint, B̃i ⊃ ∪Ri=1Tij ,
and applying Cauchy-Schwarz’s inequality we obtain

‖v‖20,γi =
R∑
j=1

‖v‖2
0,γji
≤ 8h−1

R∑
j=1

‖v‖20,Tij+8
R∑
j=1

‖v‖0,Tij‖∇v‖0,Tij ≤ 8h−1‖v‖2
0,B̃i

+8 ‖v‖0,B̃i
‖∇v‖0,B̃i

.

This finishes the proof. �

In order to prove the error estimate, we split the error into interpolation and discrete errors
as follows:

(eu, eλ) := (u− uh,λ− λh̃) = (u− ihu,λ−Πh̃λ) + (ihu− uh,Πh̃λ− λh̃) =: (ηu, ηλ)− (euh, e
λ
h̃

) .

Here, ih : C0(Ω) −→ Vh stands for the Lagrange interpolation operator, and Πh̃λ ∈ Λi,h̃ is

defined by Πh̃λ = (Πh̃λi)
N
i=1 where Πh̃λi|ẽ := |ẽ|−1(λi, 1)ẽ for all ẽ ∈ γi,h̃, and all i = 1, ..., N .

We now state the main error estimate for the method (2.1).

Theorem 3.1. Let us suppose that u ∈ H1+s(Ω), for s ∈ (0, 1], and λ ∈
N∏
i=1

Hδ(γi), for

δ ∈ [0, 1
2 ]. Then, there exists a constant C > 0, independent of h and h̃, such that

‖(eu, eλ)‖Wh
≤ C

(1 +
√
M)hs|u|1+s,Ω + h

1
2

+δ

(
N∑
i=1

‖λi‖2δ,γi

) 1
2

 .(3.5)

Proof. First, using standard interpolation estimates (see [10]), and h̃ ≤ h, we obtain

(3.6) ‖(ηu, ηλ)‖Wh
≤ C

hs|u|1+s,Ω + h
1
2

+δ

(
N∑
i=1

‖λi‖2δ,γi

) 1
2

 .

To bound the discrete error, we first suppose that s > 1
2 . Then, using Theorem 2.1 and Lemma

2.1, we arrive at

‖(euh, eλh̃ )‖2Wh
= B

(
(euh, e

λ
h̃

), (euh,−eλh̃ )
)

= B
(
(ηu, ηλ), (euh,−eλh̃ )

)
= (∇ηu,∇euh)Ω −

N∑
i=1

〈ηλi , euh〉γi +
N∑
i=1

〈eλi
h̃
, ηu〉γi +

N∑
i=1

h〈−ηλi ,−eλi
h̃
〉γi

= I + II + III + IV.(3.7)

We now bound the above right-hand side term by term. The main arguments are the ap-

proximation properties of ih and Πh̃ (see [10]), the duality between H−
1
2 (γi) and H

1
2 (γi), the

Trace Theorem in each Bi, the local trace result from Lemma 3.1, and the Cauchy-Schwarz and
Poincaré inequalities:

(3.8) I ≤ |ηu|1,Ω|euh|1,Ω ≤ Ch2s|u|21+s,Ω +
1

4
|euh|21,Ω ,

(3.9) II ≤
N∑
i=1

‖ηλi‖− 1
2
,γi
‖euh‖ 1

2
,γi
≤

N∑
i=1

‖ηλi‖− 1
2
,γi
‖euh‖1,Bi ≤ C

N∑
i=1

h1+2δ‖λi‖2δ,γi +
1

4
|euh|21,Ω ,
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III ≤ 1

4

N∑
i=1

h‖eλi
h̃
‖20,γi +

N∑
i=1

h−1‖ηu‖20,γi

≤ 1

4

N∑
i=1

h‖eλi
h̃
‖20,γi +

N∑
i=1

8
(
h−2‖ηu‖2

0,B̃i
+ h−1‖ηu‖0,B̃i

‖∇ηu‖0,B̃i

)
≤ 1

4

N∑
i=1

h‖eλi
h̃
‖20,γi + CMh2s|u|21+s,Ω ,(3.10)

(3.11) IV ≤
N∑
i=1

h‖ηλi‖20,γi +
1

4

N∑
i=1

h‖eλi
h̃
‖20,γi ≤ C

N∑
i=1

h1+2δ‖λi‖2δ,γi +
1

4

N∑
i=1

h‖eλi
h̃
‖20,γi .

Collecting then (3.7)-(3.11), we get

‖(euh, eλh̃ )‖2Wh
≤ C

(
(1 +M)h2s|u|21+s,Ω + h1+2δ

N∑
i=1

‖λi‖2δ,γi

)
+

1

2
‖(euh, eλh )‖2Wh

,

and (3.5) follows by rearranging terms and applying the triangle inequality and (3.6). Next, if
s ≤ 1

2 , proceeding as above, we get

‖(euh, eλh̃ )‖2Wh
= I + II + III + IV +

N∑
i=1

h〈λi, eλih̃ 〉γi .

The first four terms have already been bounded. The fifth is bounded as follows:

N∑
i=1

h〈λi, eλih̃ 〉γi ≤
N∑
i=1

h‖λi‖0,γi‖e
λi
h̃
‖0,γi ≤

N∑
i=1

h‖λi‖20,γi +
1

4

N∑
i=1

h‖eλi
h̃
‖20,γi .

Then (3.5) follows rearranging terms, and applying the triangle inequality and (3.6). �

Remark 3.2. The proof of the last result does not depend explicitly on N , the number of
perforations. It does, nevertheless, show a mild dependence on M (defined in (3.2)). In fact,

the error constant grows with
√
M , due to the bound on the term III above. This fact makes

the estimates of interest when the value M does not blow up. This means that, for a given mesh,
the number of inclusions can not grow in an unbounded way (since M would go to infinity). On
the other hand, if only a few inclusions are present in the domain, then the constant M will
remain moderate even for coarse meshes. It is important to remark that this problem is of no
importance once the mesh is refined enough, since the annular regions B̃i become more and more
separated (hence, in practice, reducing M), but this might be an issue when the mesh is coarse.

One further important point on the error estimate lies in the regularity of the solution of
(1.2). Since the inclusions Bi are supposed to be smooth, then, if Ω is supposed to be convex and
gi are smooth enough, it is easy to see that u ∈ H2(ω) and u ∈ H2(Bi) for each i = 1, . . . , N .

In this case, λi ∈ H
1
2 (γi) for each i = 1, . . . , N . Concerning the regularity of u in the whole of

Ω, as it was mentioned in the introduction, u belongs at least to H
3
2
−ε(Ω) for any ε > 0 (see

[13] for a discussion).
One final important factor on (3.5) is the behavior of the norms of the exact solution on

the right-hand side of the error estimate. As a matter of fact, the behavior of the norm of
the solution u can vary dramatically according to the distribution of the inclusions Bi. If the
inclusions get closer together, then the problem tends to be a partial differential equation posed
on a non-Lipschitz domain, in which case the regularity of u changes significantly, and then the
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norm on the right-hand side of (3.5) blows up as the distance between inclusions gets smaller.
Moreover, even if the inclusions Bi are separated, the distance between them affects the norm
of the solution u. In fact, it is easy to see that the norm of u depends on some negative power
of the distance between the inclusions. Hence, we do not expect the present approach to provide
error estimates which do not depend on the number of inclusions, or in the distance between
them. On the other hand, the numerical results show a reasonably robust behavior of the error
with respect to the distance between the inclusions, especially on the far field.

Remark 3.3. It is worth remarking that the method can be written in a completely consistent
way, at least in the case in which all the γi are curved boundaries. As a matter of fact, in such
a case we have J∂nvhKγi = 0 for all vh ∈ Vh and all i = 1, ..., N (see Figure 2 for a typical

situation, as can be seen there, ∇vh is the same constant both sides of the curve γi, at almost
every point of it). Then the bilinear form B can be rewritten as

B
(
(uh,λh̃), (vh,µh̃)

)
= (∇uh,∇vh)Ω −

N∑
i=1

〈λi,h̃, vh〉γi −
N∑
i=1

〈µi,h̃, uh〉γi(3.12)

+

N∑
i=1

h〈J∂nuhK− λi,h̃, J∂nvhK + µi,h̃〉γi ,

and then (2.3) follows using λi − J∂nuKγi = 0 for all i = 1, ..., N . Looking at this last writing

the link to the Barbosa-Hughes method (and the method from [16]) is apparent. Nevertheless,
we have preferred to keep the non-consistent presentation here since the definition (3.12) leads
to technical difficulties. More precisely, for this alternative writing of B Lemma 3.1 would have
to be applied with respect to the interior of Bi, which would lead, ultimately, to error estimates
that depend on diam(Bi)

−1.

Figure 2. A typical situation in which the inclusion Bi is a circle.

4. Numerical studies

In this section we report the results of numerical experiments that support the analysis carried
out in the previous sections. All computations have been performed using a code written in
FreeFem+ + [17].

For the first test case we consider the stabilised problem (2.1) with ω = Ω \ ∪3
i=1Bi, where

Ω = (0, 10)2, and Bi = B[ci, r], where r > 0. The centers of the balls Bi are c1 = (1.7, 7.4),
c2 = (5.7, 8.4), and c3 = (8.7, 3.4), respectively. To build the meshes a parameter n is given.
Then Ω is divided horizontally and vertically into 10n segments. The mesh on each γi is built
by dividing each one of them into 8n curved segments. A zoom around B1 of the resulting mesh
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when n = 1 and r = 0.1 is depicted in Figure 3, where we can observe that the finite element
mesh does not resolve the geometrical feature that is B1. More importantly, for all the values
of n, the mesh parameters satisfy |ẽ| < h, and then stabilisation is indeed needed.

Figure 3. A zoom of the computational mesh in a neighborhood of B1 for
r = 0.1 and n = 1. We can observe that the mesh does not resolve the inclusion.

We first test the method on an example with a smooth analytical solution. We set the right-
hand side f and the boundary conditions in such a way that the exact solution is given by

u(x, y) = sin(x) sin(y) in Ω.

In Table 1 we report the results for this test case when r = 0.1, while in Table 2 we consider
r = 0.025 (qualitatively similar results have been obtained for other choices of r, so we only
report these for brevity). We observe that, since u ∈ H2(Ω) and λ = 0, then the optimal order
of convergence O(h) is obtained, with an even better than optimal convergence for λ. This is
most likely due to the fact λ = 0, and is coherent with the results obtained in [3].

We next move onto a case in which the exact solution is not known. More precisely, we
consider the approximation of the following boundary value problem:

−∆u = 0 in ω ,(4.1)

u = 10 on γi, i = 1, 2, 3, u = 0 on ∂Ω .

To estimate the error commited by the present method, we have computed a reference solution
using a standard finite element method in ω using a mesh containing 71, 200 P2 elements. We
denote this solution by uref. The reference solution is depicted in Figure 4 (top). For the

fictitious domain computations we have extended the function f̃ by zero to Ω \ ω. On the
bottom of Figure 4 we depict the discrete solution obtained using n = 10. Moreover, in Figure 5
we depict cross-sections of the different approximations to u along the line y = 8.4. We can
see the discrete solution approaches the reference one as the mesh gets refined, recovering an
accurate far field profile from early on (of course, since the boundary conditions on γi are
imposed weakly, we can not expect these to be well reproduced by the discrete solution, unless
the mesh is extremely refined). To make these results more precise, we have computed the errors
‖uref−uh‖0,ω and ‖uref−uh‖1,ω for different values of n, and report them in Table 3 for r = 0.2,

and in Table 4 for r = 0.025 (again, qualitatively similar results have been obtained for other
radii, we only report these ones for brevity). We see the errors approach zero, but with a slower
rate. This is in accordance with the fact that the exact solution of the fictitious domain problem
does not belong to H2(Ω), and the fact that, since h > diam(Bi), these results still show a
pre-asymptotic regime.
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n ‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh‖20,γi

) 1
2

order

1 3.5800 0.1986
2 1.7993 0.99 0.0595 1.73
3 1.1986 1.00 0.0256 2.08
4 0.8989 1.00 0.0156 1.72
8 0.4489 1.00 0.0038 2.03
12 0.3001 0.99 0.0020 1.58
16 0.2244 1.00 0.0011 2.07

Table 1. Finite element errors for the smooth example and r = 0.1.

n ‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh‖20,γi

) 1
2

order

1 3.5804 0.1088
2 1.7993 0.99 0.0384 1.50
3 1.1986 1.00 0.0152 2.28
4 0.8988 1.00 0.0124 0.70
8 0.4489 1.00 0.0033 1.90
12 0.3001 0.99 0.0015 1.94
16 0.2243 1.01 0.0008 2.18

Table 2. Finite element errors for the smooth example and r = 0.025.

n ‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
1 17.9261 28.069
2 12.4341 0.52 20.0713 0.48
3 9.5128 0.66 15.7798 0.59
4 7.9418 0.62 13.0286 0.66
8 4.5119 0.81 7.9581 0.71
12 3.1452 0.88 5.9118 0.73
16 2.3856 0.96 4.7040 0.79

Table 3. Errors ‖uref − uh‖0,ω and ‖uref − uh‖1,Ω for r = 0.2.
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n ‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
1 14.8711 24.4094
2 13.1243 0.18 22.3855 0.12
3 11.8203 0.25 20.2568 0.24
4 10.5745 0.38 18.9668 0.22
8 7.4988 0.49 14.536 0.38
12 5.8831 0.59 11.7656 0.52
16 4.9088 0.62 9.8383 0.62

Table 4. Errors ‖uref − uh‖0,ω and ‖uref − uh‖1,Ω for r = 0.025.

Figure 4. Reference solution uref (top) and approximate solution uh for n = 10,
for r = 0.2.
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Figure 5. Cross-section of the solution for different values of n along the line y = 8.4.

We now present a second set of numerical experiments whose goal is twofold. First, we will
try to assess how the error behaves in the case the domain contains more inclusions than in the
previous case, and how it behaves when the inclusions get closer together. Also, we will measure
the error in region that does not intersect the inclusions (i.e., in the ”far field” region). For this
we consider ω = Ω \ ∪9

i=1Bi, where Ω = (0, 10)2 and the Bi’s are the circles with radius 0.1.
These circles’ centers are given in Table 5. We can see that the distances between circles varies
significantly. The boundary value problem solved is the following:

−∆u = 0 in ω ,(4.2)

u = 6 on γ1, γ4 and γ7 ,

u = 8 on γ2, γ5 and γ8 ,

u = 10 on γ3, γ6 and γ9 ,

u = 0 on ∂Ω .

B1 B2 B3 B4 B5 B6 B7 B8 B9

CASE 1 (6.6, 9.2) (7.8, 9.2) (9, 9.2) (6.6, 8) (7.8, 8) (9, 8) (6.6, 6.8) (7.8, 6.8) (9, 6.8)
CASE 2 (7.6, 9.2) (8.3, 9.2) (9, 9.2) (7.6, 8.5) (8.3, 8.5) (9, 8.5) (7.6, 7.8) (8.3, 7.8) (9, 7.8)
CASE 3 (8.4, 9.2) (8.7, 9.2) (9, 9.2) (8.4, 8.9) (8.7, 8.9) (9, 8.9) (8.4, 8.6) (8.7, 8.6) (9, 8.6)

Table 5. Centers of the inclusions Bi. The distance between the inclusions gets
smaller from CASE 1 to CASE 3.

Once again, a reference solution using quadratic elements in a highly refined mesh has been
obtained for each case, and the errors have been computed with respect to it. The meshes used
to solve the stabilised problem (2.1) have been generated in the same way as for the previous
example. For the Case 2, the reference solution to this problem is depicted in Fig. 6, and cross
sections of different approximations of u are depicted in Fig. 7. We have measured the norms
in L2(ω) and H1(ω) of the error, as well as the norms ‖uref − uh‖0,Ω̃ and ‖uref − uh‖1,Ω̃, where

Ω̃ = (0, 5)2. The latter aims at assessing how the error behaves in the far field. The results
for the three cases are reported in Tables 6-8. Finally, to assess the robustness of the method
with respect to the number of inclusions, we have repeated the same test case but considering
only 3 inclusions. We have kept only the circles B1, B2 and B3 with u = 6, 8, 10 in γ1, γ2, γ3,
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respectively. We report the results for Case 3 only, as similar results have been obtained for other
distances. The errors are reported in Table 9. Two main conclusions can be drawn from these
results. First, the size of the errors does not seem to be affected by the number of inclusions,
and the distance between them. Also, close to optimal L2(Ω̃) results can be observed, while the

convergence rate in the H1(Ω̃) norm does not seem to be signifincatly better than in the whole
of ω (although, as expected, the errors themselves are significantly smaller). On the other hand,
when we have reduced the number of inclusions, the results in Table 9 show, once again, that
the errors themselves do not seem to be very affected by this, but show a slightly better behavior
as far as the convergence rate in the H1 norms is concerned. This indicates the presence of a
larger pre-asymptotic regime in the case more inclusions are present, and when they are packed
closer together.

Figure 6. Reference solution uref for CASE 2.
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Figure 7. Cross-sections of uref and uh at y = 9.2 for different values of n for
CASE 2.

‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
n = 1 14.782 24.374
n = 2 9.7017 0.60 18.4522 0.40
n = 3 7.2801 0.70 14.9537 0.51
n = 4 5.9660 0.69 12.447 0.63
n = 8 3.3513 0.83 8.1707 0.60
n = 12 2.3579 0.86 6.1067 0.71
n = 16 1.7774 0.98 5.0732 0.64

‖uref − uh‖0,Ω̃ order ‖uref − uh‖1,Ω̃ order

n = 1 1.5405 1.7353
n = 2 0.9367 0.71 1.0551 0.71
n = 3 0.6774 0.79 0.7628 0.80
n = 4 0.5453 0.75 0.6139 0.75
n = 8 0.2938 0.89 0.3306 0.89
n = 12 0.1998 0.95 0.2249 0.95
n = 16 0.1514 0.96 0.1703 0.96

Table 6. Numerical results for 9 inclusions. Case 1.
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‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
n = 1 10.0212 19.0608
n = 2 6.3462 0.65 14.4058 0.40
n = 3 4.6790 0.75 11.7454 0.50
n = 4 3.8471 0.68 9.7236 0.65
n = 8 2.1402 0.84 6.5995 0.55
n = 12 1.5151 0.85 5.0054 0.68
n = 16 1.1449 0.97 4.2300 0.58

‖uref − uh‖0,Ω̃ order ‖uref − uh‖1,Ω̃ order

n = 1 0.6694 0.7564
n = 2 0.4111 0.70 0.4642 0.70
n = 3 0.2978 0.79 0.3362 0.79
n = 4 0.2440 0.69 0.2752 0.69
n = 8 0.1331 0.87 0.1500 0.87
n = 12 0.0923 0.90 0.1040 0.90
n = 16 0.0706 0.93 0.0796 0.92

Table 7. Numerical results for 9 inclusions. Case 2.

‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
n = 1 5.2804 14.8082
n = 2 3.3580 0.65 11.6816 0.34
n = 3 2.6033 0.62 9.8871 0.41
n = 4 2.1365 0.68 8.8501 0.38
n = 8 1.2823 0.73 6.679 0.40
n = 12 0.9562 0.72 5.4516 0.50
n = 16 0.7457 0.86 4.8062 0.43

‖uref − uh‖0,Ω̃ order ‖uref − uh‖1,Ω̃ order

n = 1 0.1964 0.2253
n = 2 0.1428 0.45 0.1623 0.47
n = 3 0.1165 0.50 0.1318 0.51
n = 4 0.0958 0.68 0.1082 0.68
n = 8 0.0594 0.69 0.0669 0.69
n = 12 0.0445 0.71 0.0502 0.70
n = 16 0.0356 0.77 0.0401 0.78

Table 8. Numerical results for 9 inclusions. Case 3.
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‖uref − uh‖0,ω order ‖uref − uh‖1,ω order
n = 1 5.7001 15.1578
n = 2 3.8427 0.56 12.1899 0.31
n = 3 2.9783 0.62 10.036 0.47
n = 4 2.5517 0.53 8.4937 0.58
n = 8 1.5315 0.73 5.9490 0.51
n = 12 1.0832 0.85 4.7315 0.56
n = 16 0.8446 0.86 4.0229 0.56

‖uref − uh‖0,Ω̃ order ‖uref − uh‖1,Ω̃ order

n = 1 0.2497 0.2808
n = 2 0.1686 0.56 0.1895 0.56
n = 3 0.1354 0.54 0.1521 0.54
n = 4 0.1175 0.49 0.1320 0.49
n = 8 0.0711 0.72 0.0799 0.72
n = 12 0.0494 0.89 0.0555 0.89
n = 16 0.0388 0.83 0.0436 0.83

Table 9. Numerical results for 3 inclusions. These inclusions are B1, B2 and B3

from Case 3.

5. Conclusion

In this work we have proposed a simple stabilised finite element method to approximate the
solution of partial differential equations posed in domains containing a moderate amount of small
perforations. The method is a fictitious domain method, enhanced with a stabilisation term that,
in some cases, is reminiscent of the Barbosa-Hughes stabilised method. The numerical results
show that, at least for the cases presented in this work, this method can be used to approximate
the solution (especially the far field) with a good accuracy, without the need to modify the
finite element space, or to consider especial geometries. We do no expect this method to give
accurate results if we consider a domain with a very large number of perforations. But, as long
as this number remains moderate, we believe the present approach presents a simple alternative
to previously existing references. This claim is supported by our numerical experiments, that
show that the method behaves in a robust way with respect to the number of inclusions, and
the distance between them. There are, nevertheless, several questions that remain open. One is
the possibility of performing a local error analysis. The numerical results show that the error
is not optimal (i.e., O(h)) in the H1 norm of a subset of ω far away from the inclusions, but
it is nevertheless better than the convergence in the whole of ω. Another possibility for future
research is exploring the coupling of this method with the smooth extension method proposed
in [11], since that method proposes a way to extend the solution ũ to an H2(Ω) function.
Then, Theorem 3.1 would provide an O(h) convergence for the stabilised method, and optimal
convergence of the full scheme could be reached. Another problem that remains open is the
application of this strategy to problems in fluid mechanics. In this case, the same approach can
be followed, and the Lagrange multiplier represents the jump of the Cauchy stress tensor (see,
e.g., [9] for a method based on the XFEM idea). There, especial consideration should be paid
to issues such as mass conservation on the original (perforated) domain. These topics will be
the subject of future research.
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circumventing the Babuška-Brezzi condition. Comput. Methods Appl. Mech. Engrg., 85(1):109–128, 1991.

[3] G. R. Barrenechea and F. Chouly. A local projection stabilized method for fictitious domains. Appl. Math.
Lett., 25(12):2071–2076, 2012.

[4] S. Bertoluzza, M. Ismail, and B. Maury. Analysis of the fully discrete fat boundary method. Numer. Math.,
118(1):49–77, 2011.

[5] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: I. A stabilized
Lagrange multiplier method. Comput. Methods Appl. Mech. Engrg., 199(41-44):2680–2686, 2010.

[6] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements: II. A stabilized
Nitsche method. Appl. Numer. Math., 62(4):328–341, 2012.

[7] A. Cangiani, E. H. Georgoulis, and P. Houston. hp-version discontinuous Galerkin methods on polygonal and
polyhedral meshes. Math. Models Methods Appl. Sci., 24(10):2009–2041, 2014.

[8] A. Cangiani, E. H. Georgoulis, and Y. Sabawi. Adaptive discontinuous Galerkin methods for elliptic interface
problems. 2016. Submitted for publication.
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