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Time-dependent methodology for non-stationary mass
flow rate measurements in a long micro-tube
Experimental and numerical analysis at arbitrary rarefaction conditions
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Abstract This paper reports the experimental and nu-

merical analysis of time-dependent rarefied gas flows

through a long metallic micro-tube. The experimental

methodology was conceived on the basis of the constant

volume technique and adapted to measure the evolu-

tion with time of a transient mass flow rate through

a micro-tube. Furthermore, the characteristic time of

each experiment, extracted from the pressure measure-

ments in each reservoir, offered a clear indication on the

dynamics of the transient flow as a function of the gas

molecular mass and its rarefaction level. The measured

pressure evolution with time at the inlet and outlet of

the micro-tube was compared to numerical results ob-

tained with the BGK linearized kinetic equation model.

Finally we present an original methodology to extract

stationary mass flow rates by using the tube conduc-

tance, which can be associated to the characteristic

time of the experiment, measured for different mean
pressures between two tanks. The results were obtained
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3Aix-Marseille Université, CNRS, IUSTI UMR 7343,
13453, Marseille, France.
E-mail: irina.martin@univ-amu.fr

4James Weir Fluids Laboratory, Department of Mechanical
and Aerospace Engineering, University of Strathclyde,
Glasgow G1 1XJ, UK.
E-mail: minh-tuan.ho@strath.ac.uk

in a wide range of rarefaction conditions for nitrogen

(N2). A brief comparison is offered in respect to R134a

(CH2FCF3), too, a heavy polyatomic gas which is typ-

ically used in the refrigeration industry.

Keywords micro-flows · transient flows · MEMS · gas

rarefaction · kinetic theory

1 Introduction

Since the advent of micro-electro-mechanical systems

(MEMS), the physical investigations performed on gas

flows at a microscopic scale have become of great in-

terest for various applications that touch almost every

industrial field, such as fluidic microactuators for ac-

tive control of aerodynamic flows, mass flow and tem-

perature microsensors, micropumps, microsystems for
mixing or separation for local gas analysis, mass spec-

trometers, vacuum applications, pressure gauges, dos-

ing valves and microheat exchangers. In practical appli-

cations, these microfluidic devices are often required to

function in transient conditions, hence a time-dependent

analysis of the flow is needed. To this day not much at-

tention has been dedicated to study and analyze time-

dependent gas flows in micro devices, to the extent that

experimental data on the matter is basically lacking.

In micro-devices the equivalent mean free path of the

gas molecules (`) can be of the same order as the char-

acteristic dimension (L) of these devices. In this case

the fluid can be considered to be under rarefied condi-

tions and it cannot be treated as a continuum medium

as it usually done by classic fluid mechanics. Depending

on their level of rarefaction,which can be characterized

by a rarefaction parameter δ = L/`, micro gas flows

often require modeling by means of molecular based
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approaches. Gas rarefaction induces macroscopic non-

equilibrium effects at the interface between gas and

solid surfaces for the gas macroscopic parameters, such

as viscous and thermal slip and temperature jump at

the wall, for the gas velocity and its temperature, re-

spectively. These non-equilibrium phenomena are af-

fected by the specific configuration of the surface of

the micro-device, such as surface roughness and mate-

rials, and the molecular structure of the gas considered

(Sharipov [2011]).

At the current state of the art, experimental observa-

tion on rarefied gas flows is generally limited to station-

ary flow configurations. Particularly, most works aim

to measure stationary isothermal mass flow rates as a

function of the flow rarefaction in order to identify the

magnitude of the velocity slip at the wall. This par-

ticular phenomenon has been greatly investigated since

the modified boundary conditions to be used together

with the Navier-Stokes equations for slightly rarefied

gas flows take account of gas slip at the wall. However,

these slip boundary conditions require an empirical ad-

justment which depends on the gas tangential momen-

tum accommodation at the wall [Porodnov et al, 1974;

Harley et al, 1995; Arkilic et al, 1997; Ewart et al, 2007;

Pitakarnnop et al, 2010; Perrier et al, 2011; Yamaguchi

et al, 2011; Silva et al, 2016].

Even if the main focus of attention in rarefied gas flows

has been the measurement of stationary flow configura-

tions, some authors have numerically studied transient

rarefied gas flows (Colin [2005]; Lihnaropoulos and Val-

ougeorgis [2011]; Sharipov [2012b, 2013]; Vargas et al

[2014a]; Sharipov and Graur [2014]). Nevertheless, very

little experimental efforts on the topic have been con-

ducted so far. The only experimental study that at our

knowledge offers an insight on transient rarefied gas

flows is the recent work of Vargas et al [2014b], who

measured the pressure difference between inlet and out-

let of a single short tube as a function of time for dif-

ferent single gases and binary gas mixtures. The hybrid

model they presented could qualitatively but not quan-

titatively follow the experimental results.

Due to this lack of experimental observation, the pri-

mary goal of the present study was to measure the re-

laxation process of a gas diffusing through a long micro-

tube. The relaxation process refers to the pressure vari-

ation with time in two tanks, set at the inlet and outlet

of a microtube, from an initial pressure difference stage

until a final equilibrium stage of pressure equality.

Furthermore, by monitoring the entire relaxation pro-

cess of pressure evolution inside two tanks of equal vol-

umes at the inlet and outlet of the micro-device, we

demonstrated that it is indeed possible to extract an

unique conductance value that depends only on the

average pressure of the experiment, the geometry of

the channel and the gas nature. This was achieved by

means of a dynamic constant volume technique that

was firstly proposed to measure thermally driven gas

flows by Rojas-Cardenas et al [2011]. The originality in

respect to the classic constant volume technique (Ark-

ilic et al [1997], Yamaguchi et al [2011], Ewart et al

[2006]) relies on the fact that a dynamic measurement

technique considers the time-dependency of pressure

during the full duration of the pressure relaxation pro-

cess obtained from one single experiment. The method-

ology therefore takes under account the intrinsic non-

stationarity of the pressure measurements and profits

from it to characterize the relaxation process by a char-

acteristic time that can be associated to the conduc-

tance of the channel used.

From these experiments it is not only possible to mea-

sure a single conductance value, but it is also possible to

associate to the pressure evolution with time the time-

dependent mass flow rate along the micro-tube.

The experiments were performed for different initial

pressure ratios and for a large spectrum of rarefaction

conditions.

Finally, the obtained experimental time-dependent re-

sults were compared with the numerical solution of the

linearized BGK model kinetic equation in the case of

transient flows (Sharipov and Graur [2014]).

The understanding of the phenomena relating the non-

equilibrium effects of viscous slip to the transient gas

macroscopic displacement in micro-systems under dif-

ferent type of rarefaction conditions and for different

gases could be used to develop interesting applications

such as for example gas separators or accurate micro

mass flow rates regulating devices.

2 Experimental Apparatus

The experimental set-up was composed of a single metal-

lic (stainless-steel) micro-tube of circular cross-section,

two reservoirs, two capacitance diaphragm pressure gauges,

two thermocouples, a vacuum pump and the acquisi-

tion system (Figure 1). The single metallic micro-tube

(Lt = 92.22 ± 0.01mm, D = 435.5 ± 3.5µm) was con-

nected to two tanks which were positioned at the inlet

and outlet of the capillary.

The volume of the tanks was chosen to be much larger

in respect to the volume of the micro-tube. Two sets

of inlet/outlet tank volumes were used. The main ex-

perimental campaign was performed for a first set of

volumes with almost equal dimensions, that is V1 =

173.2±0.5ml and V2 = 174.5±0.5ml (V1/V2 = 0.9926).

While the second set of volumes were chosen to be of

considerably different dimensions V1 = 181.1 ± 0.5ml
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Fig. 1 Above: The experimental apparatus composed by the
micro-tube, two temperature sensors (t1 and t2), two tanks
(R1 and R2) and the INFICON capacitance pressure di-
aphragm gauges (CDG). Below: Details of the circular cross-
section micro-tube.

and V2 = 28.5 ± 0.1ml (V1/V2 = 6.354). The indexes

1 and 2 stand for inlet and outlet of the tube, respec-

tively. The two tanks were appositely designed to host

the single micro-tube. However, the experimental ap-

paratus can be re-arranged in order to host in its test-

section a great variety of micro-fluidic devices.

The temperature inside both tanks was continuously

monitored by means of two thermocouples and it was

stabilized at around Tm = 295.5 ± 0.5K during the

full duration of one experiment. The apparatus was

thermally insulated from the external room by means

of the same adiabatic chamber used by Pitakarnnop

et al [2010]. Additionally, an efficient isothermal stabil-

ity was achieved due to the high thermal inertia of the

two stainless steel tanks. The temperature oscillations

at the inlet and outlet tanks were evidently lower than

the sensibility of the temperature sensors, as it can be

seen from Figure 2. We estimated these oscillations in

the order of dT/Tm = 10−3.

The inlet tank was connected by means of valve A

to high pressure reservoirs containing nitrogen N2 and
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Fig. 2 Temperature oscillations around the average tempera-
ture Tm = 295.5±0.5K measured by two temperature sensors
(t1 and t2) at the inlet and outlet tanks (R1 and R2).

R134a (CH2FCF3), a commonly used refrigerant fluid.

The outlet tank was connected by means of valve B to

a vacuum pump. The test section could be vacuumed

until pressures as low as 10−2Pa and it was regulated

by means of valve B. The rarefaction conditions im-

posed in the micro-tube ranged from transition to near

hydrodynamic regime.

The fast response capacitance diaphragm gauges (CDG)

monitored the pressure variation with time inside the

two tanks. The acquisition frequency of the pressure

gauges was of 33Hz. CDGs with different full scales

were used as a function of the nominal pressure in the

system, which allowed us to improve the measurements

accuracy at low pressures (see Table 1 for specifica-

tions).

3 Experimental methodology

In this section we introduce the dynamic constant vol-

ume technique which can be used to extract a time-

dependent mass flow rate at the inlet or outlet of the

micro-device. In order to do this we give a brief de-

scription of the well-known classical constant volume

technique and present its limitations and how it can be

extended into a dynamic constant volume technique.

Finally, as a consequence of the new methodology, we

present the extraction of the conductance from the ex-

ponential relaxation of the pressure variation with time.

3.1 Constant volume technique

From the constant volume technique it is possible to

measure the stationary mass flow rate along the tube

by correlating the variation of mass inside tanks 1 and 2
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F. S.1 Accuracy Resolution Lowest r. Acq.
[Pa] % of r.2 % of F.S % of F.S. frequency

13332
1333.2
133.32

 0.2 0.003 0.01 33Hz

1full scale 2reading

Table 1 Characteristics of the capacitance pressure gauges
CDG025.

to a linear pressure variation with time. Thus, the con-

stant volume technique consists on performing a quasi-

stationary macroscopic thermodynamic study inside a

defined volume of a tank by means of the ideal gas law

p1V1 = M1RT, p2V2 = M2RT, (1)

where R, T , pi, Vi, and Mi, are, respectively, the specific

gas constant, the temperature, the pressure, the tank

volume and the mass of the gas in the tank. The sub-

script i = 1, 2 defines the equation in respect to where

the measurement was conducted, that is the tank at

the inlet or outlet of the microtube. As the experiments

were isothermal, the temperature in both tanks was ex-

actly the same.

If one differentiates eq. (1) by considering a constant

tank volume, it is possible to write for tank 2

dM2 =
V2
RT

dp2

(
1− dT/T

dp2/p2

)
, (2)

while an analogous expression can be written for the

other tank.

If the relative temperature variation in the tank can

be considered as negligible in relation to the relative

pressure variation and by defining a specific time in-

terval, dt, it is then possible to obtain the isothermal

mass-flow-rate Ṁ2 from eq.(2) as

Ṁ2 =
V2
RT

dp2
dt
, ε =

dT/T

dp2/p2
� 1. (3)

Since here the variation of the thermodynamic param-

eters dM and dp are sufficiently small, one can approx-

imate dM/dt and dp/dt as the time derivative of the

mass, i.e. mass flow rate Ṁ , and the time derivative of

pressure, respectively. For each experiment the oscilla-

tions of temperature were in the order of dT/T = 10−3

and the variation of pressure in average was in the order

of dp/p = 10−1. Therefore the ε parameter as defined

in eq. (3) was estimated to be negligible (ε ≈ 0.01).

From the mass conservation law the mass flow rate leav-

ing the first tank is necessarily equal to the mass flow

rate entering into the second tank and it is therefore

possible to write

Ṁ2 = −Ṁ1 = Ṁ. (4)

Consequently, from eqs. (3) and (4), one can simply

notice that by subtracting

dp1
dt
− dp2

dt
= RT

(
Ṁ1

V1
− Ṁ2

V2

)
, (5)

it is possible to deduce the dependence of the mass vari-

ation in one tank to the pressure difference variation

between both tanks, as

Ṁ = − V0
RT

d(∆p(t))

dt
, V0 =

V1V2
V1 + V2

, (6)

where ∆p(t) is the pressure difference between the two

reservoirs: ∆p(t) = p1(t)− p2(t).

In the classical constant volume technique case the du-

ration of the time interval dt is notably chosen to be

small enough in order to respect the tank stationary as-

sumption in both reservoirs, that means that the varia-

tion of any macroscopic quantity inside the tanks needs

to be negligible. However, this time interval needs to

be long enough, too, since the pressure changes in both

tanks must be measured within an acceptable accuracy.

The stationary flow assumption physically justifies that

the pressure varies with time in a linear manner and

by thus it may be represented with a simple linear

least-square fit. Conversely, the measurements consis-

tent with the linear profile justify the stationarity as-

sumptions [Ewart et al, 2006].

3.1.1 Limits and extension of the constant volume

technique

The first limit of the classical constant volume tech-

nique results from the fact that the method does not

provide direct access to a real time dependent flow

regime. In fact, the method could only be used at a

fixed time during one experiment, allowing us to de-

rive various stationary mass flow-rates related to vari-

ous quasi-stationary states.

Now considering precisely the use of the methodology

at a fixed time, some limits can be found considering the

two opposite purposes of the technique. A time interval

dt is to be defined where the pressure measurement has

to be made. As previously discussed, this time interval

must be sufficiently small to allow us to identify the

left-hand-side expression of eq.(3) to the time deriva-

tive of the mass, namely, to the mass flow rate at a

fixed time t∗, in other words to a mass flow rate consid-

ered as stationary. But, nevertheless, it is necessary to
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consider a time interval dt, sufficiently long, that allows

us to extract a pressure variation measurement that has

a substantial physical meaning.

Thus, in some cases, where a very fast pressure vari-

ation with time is initially induced, it may be diffi-

cult to completely verify both the previously defined

constraints: in such cases the error on the stationary

mass flow rate evaluation would be without any doubt

increased. As previously discussed, when the pressure

varies with time in a linear way, this error becomes, by

all matters, completely negligible.

3.2 Dynamic constant volume technique

The technique proposed herein is not limited to a quasi-

stationary approach, i.e. to the measurement of a linear

pressure variation with time.

Firstly, this dynamic method allows us to obtain, through

the pressure time-derivative, an explicit expression of

the time-depending mass flow rate. Therefore, regard-

ing the stationary mass flow rate evaluation, the new

methodology eliminates the necessity of using a time in-

terval, where the pressure varies linearly, but uses the

whole process of the pressure decay in both reservoirs.

Secondly, this methodology offers new interesting pos-

sibilities, since the pressure difference decay with time

between both reservoirs can be associated to a conduc-

tance value which depends only on the tube geometry,

the gas used and the average pressure in the micro-

device.

3.2.1 Pressure variation with time

In order to obtain a pressure variation with time in both

reservoirs, an initial pressure difference,∆p0, is imposed

between the two tanks. Thereafter, since the tanks are

connected only by the micro-tube (valve A and B are

closed, see Fig. 1), the pressure inside the two tanks

can relax to a final state of equilibrium, i.e. to a final

pressure equality stage where pf = p1(tf ) = p2(tf ).

For every experiment we monitored the whole pres-

sure relaxation process by means of two capacitance

diaphragm gauges connected to the tanks. For conve-

nience, we always imposed a higher initial pressure in

tank 1 in respect to tank 2, that is p1(t) > p2(t) (Figure

3).

The relation between the pressure variations in both

tanks, that is from the initial pressure pi(t0) imposed

to the final pressure pf reached, can be computed a

priori as this variation closely relates to the tanks vol-

ume ratio. From the ideal gas law, admitting again the

mass conservation along the micro tube at any time, see

eq. (4), one can write the following relation for the two

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000
p
(t

) 
[P

a
]

time [s]

Nitrogen

tank1

tank2

 pressuremean

Fig. 3 An initial pressure difference (∆p0) is imposed be-
tween the two reservoirs that leads to a pressure relaxation
with time in the two tanks 1 and 2 until a final pressure equi-
librium is reached pf = p1(tf ) = p2(tf ). The initial pressures
are p1(t0) = 805.7Pa, p2(t0) = 23.5Pa, the mean pressure
varies from pm(t0) = 414.6Pa to pf = 413Pa. A small frac-
tion of the acquired experimental points are shown for sake
of a proper visual representation. The acquisition frequency
for each experiment was 33Hz.

tanks if they are maintained at the same temperature

V2dp2 = −V1dp1. This expression can be rewritten in

the following form

pf − p2(t)

p1(t)− pf
=
V1
V2
. (7)

It is clear from Eq.(7) that by adjusting the tanks’

volume ratio one could control the pressure variation

between initial and final stages. Therefore, from eq. (7)

it is possible to estimate the maximal variation of the

mean pressure pm = 0.5(p1 + p2) with time during one

experiment between the initial mean pressure pm(t0) =

pm to the final mean pressure pm(tf ) = pf

pf
pm(t0)

=
2(1 + kV kp)

(1 + kV )(1 + kp)
. (8)

In previous expression kp = p1(t0)/p2(t0) is the initial

pressure ratio, kV = V1/V2 is the volume ratio. As it

is clear from Eq. (8), when the tank volumes are equal

kV = 1, the mean pressure pm(t) does not vary in time,

i.e. pm(t) = pf during the whole experiment.

By using Eq. (8) one can estimate the maximal am-

plitude of mean pressure variation between its initial

state pm(t0) and its final state pf for a known tank vol-

umes ratio and initial pressure ratio. For example for
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Experimental data
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Fig. 4 Pressure difference variation with time ∆p(t): an ini-
tial pressure difference is imposed at the inlet and outlet of the
tube, this engenders a pressure relaxation in the two tanks 1
and 2 until a final pressure equilibrium is reached ∆p(tf ) = 0.
The experimental results were fitted by eq. (13). The mean
pressure is 413Pa. A small fraction of the acquired experimen-
tal points are shown for sake of a proper visual representation.
The acquisition frequency for each experiment was 33Hz.

the case shown in Figure (3) where V1/V2 = 0.9926,

p1(t0) = 805.7Pa and p2(t0) = 23.5Pa the mean pres-

sure varies from pm(t0) = 414.6Pa to pf = 413Pa,

that means ≈ 0.35%. This information will be crucial

for what concerns the conductance determination per-

formed in the following section.

3.2.2 Exponential relaxation with time

By analogy to Ohm’s law one can relate the pressure

difference (p1 − p2) across the micro-tube to the “po-

tential”, the flow throughput Q̇ to the “current” and

the conductance C to the inverse of the “an electrical

resistance”. Therefore, one can define the conductance

of the tube as

C = − Q̇1

p1 − p2
, C =

Q̇2

p1 − p2
, (9)

where C is the same for both reservoirs, admitting the

mass conservation of the flow along the micro-tube [Ark-

ilic et al, 2001]. The flow throughput Q̇,commonly used

in the field of vacuum science and technology to express

gas flow rates [Jousten, 2008], is defined as

Q̇i =
d(pV )i
dt

= RTṀi, (10)

and, as seen above, it can be easily correlated to the

mass flow rate by using eq. (3). We can now relate the

conductance C in eqs. (9) to the pressure variation in

time in each reservoir by means of eq. (10) in the fol-

lowing form:

dp1
dt

= − C
V1

(p1 − p2),
dp2
dt

=
C

V2
(p1 − p2), (11)

where V1 and V2 are constant tank volumes. By sub-

tracting one of the previous equations to the other, we

can obtain a differential equation for the pressure dif-

ference ∆p(t) between the tanks:

d(∆p(t))

∆p(t)
= − C

V0
dt. (12)

This differential equation can be easily solved if the

constancy of the conductance C in time is assumed,

then the solution of Eq. (12) has the form

∆p(t) = ∆p0 exp

(
− t
τ

)
, τ =

V0
C
, (13)

where ∆p0 is the initial pressure difference at t = 0 and

τ is the characteristic time of the experiment or the

system relaxation time.

The pressure difference variation with time between

tank 1 and 2 can be thus associated to an exponential

decay for the case where the conductance of the tube is

constant during one single experiment. In addition we

can note that τ can be extracted from the experimen-

tal pressure variation with time (Figure 4). This value

of the characteristic time allows us to obtain the tube

conductance corresponding to the mean pressure of an

experiment.

3.2.3 Time dependent and steady state mass flow rate

measurements

In the previous section we derived the exponential ex-

pression of the pressure difference variation with time.

By using eqs. (6) and (13) we can now express the

mass flow rate variation with time using the analyti-

cal derivation of the pressure difference variation with

time. Therefore, for the case of isothermal tanks the

mass flow rate entering in tank 2 can be written as

Ṁ2(t) =
V0
RT

∆p0
τ
exp

(
− t
τ

)
. (14)

This expression of the mass flow rate, eq. (14), can be

used in two different ways:

– The mass flow rate depends on time, but for a given

time t = t∗ this mass flow rate can be identified as

the stationary mass flow rate corresponding to the

pressure difference between the extremities of the

tube, i.e. p1(t∗)− p2(t∗).
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Time-dependent methodology for non-stationary mass flow rate measurements 7

– It is possible to directly consider the transient mass

flow rate Ṁ(t) through the tube for the full duration

of one experiment in order to study the transient

phenomenon.

3.2.4 On the conductance constancy condition

As it was shown in Section 3.2.2, the expression of the

pressure difference variation with time [eq. (13)] and,

therefore, the expression of the mass flow rate variation

with time [eq. (14)], are valid under the assumption

of having a constant conductance C during one single

experiment. Let us now analyze for which conditions

the conductance constancy assumption is thus satisfied.

As seen in Section 3.2.2 the conductance can be easily

related to the mass flow rate along the tube leaving the

first reservoir or entering the second reservoir. For the

case of tank 2, one can write

C =
ṀRT

p1 − p2
. (15)

It is known that the mass flow rate Ṁ imposed by a

pressure difference p1 − p2 flowing through a long tube

of diameter D � L can be related to the dimensionless

mass flow rate G as

Ṁ = G
πD3(p1 − p2)

8vL
, (16)

where v =
√

2RT is the most probable molecular speed

[Sharipov, 1997]. Comparing Eqs. (15) and (16) one can

easily conclude for an isothermal configuration that the

conductance is constant when the dimensionless mass

flow rate G is constant. Since G is only a function of the

rarefaction parameter [Sharipov, 1997], it is possible to

state that if the gas rarefaction is constant, the conduc-

tance is constant, too. The mean rarefaction parameter

along the tube can be defined as

δm =
pmD

µ(T )v
, (17)

where µ(T ) is the gas viscosity which depends only on

temperature. The values of G are provided in Sharipov

[1997] for a large range of the rarefaction parameter. It

becomes clear from eq. (17) that for an isothermal case,

the rarefaction parameter δm depends only on pressure.

Therefore, when the mean pressure does not vary dur-

ing the experiment the dimensionless mass flow rate G

is constant and hence the tube conductance remains

constant too. If the rarefaction varies greatly along the

channel for large pressure ratios imposed, the dimen-

sionless mass flow rate varies along the channel, too,

nevertheless it has been proven that when the pressure

ratio is p1/p2 = 4 the dimensionless mass flow rate G

can be approximated with a 5% accuracy from the value

calculated by means of the mean pressure between the

inlet and outlet tank, i.e. G(δm) [Sharipov, 1997; Graur

and Sharipov, 2008]. As it was shown in Section 3.2.1

the mean pressure does not vary during an experiment

when the inlet/outlet volumes are identical. Therefore

it is interesting to have an estimation of the variation

of dimensionless mass flow rate G, and consequently of

the conductance C, as a function of the rarefaction pa-

rameter defined by the mean pressure. An expression

of the dimensionless mass flow rate G as a function

of the mean rarefaction parameter δm was proposed in

Sharipov et al [2010] for the case of complete accom-

modation of molecules to the wall:

G(δm) =
8

3
√
π

1 + 0.025 δ0.7m ln
(
δm
2

)
1 + 0.448 δ0.8m

+

+

(
δm
8

+ 1.018

)
δm

2 + δm
.

(18)

By analyzing eq. (18) one can see that for small deltas

(δm → 0, low pressures) the dimensionless mass flow

rate tends to a limit value G(δm) → 8
3
√
π

, however

for (δm → ∞) G(δm) becomes linearly proportional to

δm tending to the hydrodynamic limit, where the mass

flow rate is defined by the Poiseuille solution, that is

G(δm) = δ/8.

Since the dimensionless mass flow rate is correlated to

the mass flow rate and the conductance from eqs. (15)

and (16)

C =
πD3v

16L
G, (19)

by using eq. (18) one can obtain two limit values for

the conductance, one in the free molecular flow

CFM =

√
πD3v

6L
(δm → 0), (20)

and one in the hydrodynamic flow, which coincides with

the Poiseuille solution and is linearly proportional to

the mean pressure

CH =
πD3v

128L
δm (δm > 103). (21)

Therefore, it is clear that the limit case of hydrody-

namic flow could be sensitive to conductance variations

during the duration of one experiment, specially for

cases above δm > 10, where the influence of the mean

pressure starts to be relevant. It was thus of great im-

portance to chose an upper limit value of mean pressure

variation with time in respect to the initial pressure ra-

tio imposed at the beginning of one experiment. Since

the reservoirs’ volume ratio is known, we can establish
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a condition on the maximum pressure ratio kp to be im-

posed to have a maximum mean pressure variation with

time pf/pm of the order of 1%. From eq. (8), for the

first case configuration of volume ratio V1/V2 = 0.9926

an initial pressure ratio kp = 33.75 relates to a maxi-

mum mean pressure variation of 0.35%, therefore, one

can consider that this volume ratio configuration does

not generate any mean pressure variation during the

whole duration of one experiment. For the second case

configuration of volume ratio V1/V2 = 6.354 an initial

pressure ratio kp = 1.1475 relates to a maximum mean

pressure variation of 5%, therefore, eq. (13) can be ap-

plied to this case configuration only for relatively short

relaxation experiments. Since the conductance C in the

worst case scenario is linearly proportional to pm, we

can state that in our experiments we have chosen to

work with a maximum of 1% uncertainty value related

to the measurement methodology on C.

3.2.5 Mass flow rate measurements uncertainty

To estimate the measurement uncertainty when using

the dynamic constant technique we can rewrite eq. (14)

in the following form

Ṁ(t) =
C

RT
∆p0exp

(
− C
V0
t

)
. (22)

Using the classical technique to calculate the mass flow

rate measurements uncertainty if one measures it using

Eq. (22).

dṀ

Ṁ
=
dC

C
+
d(∆p)

∆p
+
dV0
V0

+
dε

ε
. (23)

The first term is related to the constancy of the con-

ductance and the fitting coefficient τ and can be esti-

mated at around dC
C = 1%, the second uncertainty can

be related to pressure sensors used d(∆p)
∆p = 0.5%, the

third term is related to the volume measurement uncer-

tainty which was estimated to be around dV0

V0
= 0.5%,

while the last term is related to the relative tempera-

ture variation effects, see Section 3.1 for details, and it

is estimated to be of the order of dε
ε = 1%.

4 Experimental Results

4.1 Pressure variation with time

The pressure variation with time experiments gave a

clear idea on which parameters affect the relaxation

process from the initial non-equilibrium stage and the

final equilibrium stage of pressure equality. It was pos-

sible to identify some main parameters that affected

Gas Molecule µ× 10−5[Pa s] R [Jkg−1K−1]

Nitrogen N2 1.775 297
R134a CH2FCF3 1.181 81.5

Table 2 Gas properties

the process, such as the gas used, the mean rarefaction

of the gas (δm), the tanks dimensions (V1, V2) and the

tube conductance (D, L). By keeping the tube geom-

etry as a constant parameter, we were able to extract

the influence of the gas rarefaction, the gas molecular

composition and the tanks volumes over the pressure

variation with time behavior.

It is possible to characterize a single experiment by

defining its initial pressure difference ∆p0 and its initial

state of mean rarefaction as a function of the rarefac-

tion parameter δm. The values of the gas viscosity and

specific gas constant are given in Table 2.

The pressure variation with time changes radically as

a function of the gas rarefaction, i.e. mean rarefac-

tion parameter δm, see Fig. 5 left. For the same ini-

tial pressure difference (∆p0) imposed, but for different

δm, the pressure variation with time is much slower for

rarefied flows that tend to the free molecular regime

(δm = 0.5) in respect to flows in near hydrodynamic

regime (δm = 338). For example, the time that a flow

of nitrogen needs to reach its final state of equilibrium

is around tf = 200s for δm = 338 (near hydrodynamic

regime), around tf = 1500s for δm = 19.5 (slip regime)

and around tf = 4000s for δm = 0.5 (transition regime).

Furthermore, the pressure variation with time is greatly

influenced by the molecular weight of the gas (Fig. 5

right). For same initial rarefaction conditions, same ini-

tial pressure difference and same tank volumes (V1/V2 =

6.35; V0 = 24.62ml), a heavier gas is always slower to

reach its final state of equilibrium than a lighter gas. For

example, a nitrogen flow needs around 600s to reach its

final equilibrium stage against approximately 1000s for

R134a at same rarefaction conditions, δm = 16.4, which

corresponds to slip regime (see Table 2 for the gas prop-

erties).

Finally, again an interesting information can be de-

duced from Figure (5 right). For the pressure variation

with time of nitrogen, in respect to different tank vol-

umes used (case 1: V0 = 86.92ml and V1/V2 = 0.9926

and case 2: V0 = 24.62ml and V1/V2 = 6.354), it is pos-

sible to observe that the relaxation process is always

slower if the V0 parameter increases or, in other words,
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Fig. 5 Pressure difference variation with time until a pressure equilibrium equality is reached for the same initial pressure
difference ∆p0 = 100Pa. The experimental results are shown for the same initial pressure difference. Left: pressure variation
with time of nitrogen at different rarefaction conditions (V1/V2 = 0.9926 V0 = 86.92ml). Right: pressure variation with time
at the same rarefaction conditions of nitrogen and R134a (V1/V2 = 6.35 V0 = 24.62ml). On the right we compare the pressure
variation with time for different tank volumes used, too.

if the harmonic mean volume of the two tanks V0 is

increased.

4.2 Conductance

We were able to extract the conductance of the tube at
arbitrary rarefaction conditions, from transition to near

hydrodynamic regime, by fitting the pressure variation

with time [eq. (13)], at different mean pressures. For

the same tube and volumes of the tanks, we observed,

as expected, that the conductance was strongly influ-

enced by the rarefaction conditions of the flow. For the

reasons explained in Section 3.2.4, the here presented

conductance results were obtained only for the equal

volumes configuration, V1/V2 = 0.9926.

We compared our conductance experimental results to

numerical results of the dimensionless mass flow rate G,

obtained by Graur and Sharipov [2008] with the BGK

model kinetic equation and to the empirical fit of G,

obtained by Sharipov et al [2010], eq. (18), that repro-

duces very accurately the BGK solution. Equation (19)

is used to relate the two quantities.

It is possible to observe from Figure 6 the very good

agreement between the experimentally obtained tube

conductance and the results derived from the the solu-

tion of the BGK equation. It should be underlined that

the experimental uncertainty on the conductance is re-

lated to the uncertainty on the pressure and volume

measurements, see eq. (13), as well as to the dimen-

sional quality of the volumes V1 and V2 which have to be

perfectly identical to assure the constancy of the mean

pressure during one experiment. As expected, the ex-

perimental results tend towards the free molecular limit

for δm → 0 [eq. (20)] and the hydrodynamic limit for

δm > 103 [eq. (21)].

It should be noted that when a comparison between

the experimental and numerical results of conductance

is carried out, additional sources of experimental er-

rors have to be considered. These sources are related

to the tube dimensions measurement and, especially, of

the tube diameter, since it intervenes at the power 3

when the numerical values of the dimensionless mass

flow rate G are compared to the experimental values of

the conductance C via eq. (19). Nevertheless, for the

case shown on Figure 6, the mean relative deviation

between experimental and numerical results is of the

order of 1.3%.

4.3 Mass flow rate variation with time

By fitting the data for pressure variation with time re-

sults by means of the exponential function of eq. (13)
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Fig. 6 Conductance (C = V0/τ) for nitrogen (N2) as a function of the mean gas rarefaction conditions, that is from transition
to near hydrodynamic regime. A comparison is done with values obtained from the BGK kinetic model equation [Graur and
Sharipov, 2008] and a fitting equation (eq. 18) [Sharipov et al, 2010]. In the plot also the free molecular (left) and hydrodynamic
(right) analytical solutions (eqs. 20, 21) are represented.

and consequently by using eq. (14), the dynamic con-

stant volume technique allowed us to measure non sta-

tionary mass flow rates along the full duration of one

experiment, that is from the initial pressure difference

imposed, where the mass flow rate along the tube was

at its maximum, until a final pressure equality equilib-

rium stage was reached, where the mass flow rate was

zero.

It is possible to notice that the influence of the rarefac-

tion on the flow is predominant in the mass flow rate

evolution when different rarefaction conditions are com-

pared whereas keeping the same gas and same initial

pressure difference imposed (Fig. 7 left). At rarefaction

conditions tending to hydrodynamic flow regime, for

example at δm = 338, the initial pressure difference im-

posed engendered a greater initial mass flow rate, and

its final equilibrium state to be reached more rapidly

its final equilibrium stage in respect to a higher rarefied

flow, for example at δm = 0.50 in transition regime.

The influence of the gas used on the mass flow rate

variation with time is also evident, where is always the

heavier gas that gives rise to a greater mass flow rate

at same rarefaction conditions for same initial pressure

differences imposed (Fig. 7 right).

In respect to different tank volumes used for the ex-

periments (case 1: V0 = 86.92ml and V1/V2 = 0.9926

and case 2: V0 = 24.62ml and V1/V2 = 6.354), it is

possible to observe that the mass flow rate variation

with time process is slower if the V0 parameter in-

creases or, in other words, if the total volume of the

two tanks increases (Fig. 7 right). This is an analo-

gous consideration in respect to the pressure variation

with time section, but for the here shown results it is

possible to observe the great reproducibility of the ex-

periments performed: for two completely different ex-

perimental campaigns, that is for same tube but dif-

ferent tank volumes used, for the same mean pressure

and same initial difference of pressure, the methodol-

ogy measures the same initial mass flow rates within

the experimental uncertainty. For the second case con-

figuration V1/V2 = 6.354 the here shown pressure relax-

ation with time from ∆p0 = 10Pa and p1/p2 = 1.036,

corresponds to a mean pressure variation with time of

1.3% and a Conductance variation of 0.7% [eq. (18) and

(19)].
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Fig. 7 Mass flow rate variation with time until a final equilibrium of no motion is reached through the tube for the same initial
pressure difference. Left: mass flow rate variation with time of nitrogen at different rarefaction conditions for ∆p0 = 100Pa
(first case configuration:V1/V2 = 0.9926 and V0 = 86.92ml). Right: mass flow rate variation with time at the same rarefaction
conditions of nitrogen and R134a for ∆p0 = 10Pa. Additionally, two volume case configurations were studied (first: V1/V2 =
0.9926, V0 = 86.92ml and second:V2/V1 = 6.354 V0 = 24.62ml).

5 Comparison between numerical and

experimental results

5.1 Pressure variation with time

The experimental pressure variation with time of nitro-

gen has been compared with numerical results based on

the linearized BGK model kinetic equation. The partic-

ularity of the numerical results presented here relates

to the application of stationary mass flow rate results

previously obtained by solving the linearized station-

ary kinetic equation (Graur and Sharipov [2008]) in or-

der to describe a transient rarefied gas flow (Sharipov

and Graur [2014]). This approach is of undeniable ef-

ficiency since the computational time required to de-

scribe a transient phenomenon is not as significant in

respect to a direct solution of the full time-dependent

kinetic equation. The deviation between the results ob-

tained by the BGK model and those of the Boltzmann

equation does not exceed 5% for the isothermal flows

[Sharipov, 2012a]

The results presented in Figure 8 take under account

the pressure variation with time of nitrogen inside both

the inlet and outlet tanks for two cases (case 1: V0 =

86.92ml and V1/V2 = 0.9926 and case 2: V0 = 24.62ml

and V1/V2 = 6.354). Three different rarefaction con-

ditions have been chosen for the comparison at slip,

transition, and close to free molecular regime condi-

tions. It is possible to observe that the numerical re-

sults for the six cases studied, that is from slip to close

to free molecular regime, match very well the experi-

mental results. The small difference that is to be found

between numerical and experimental can be due to the

uncertainties related to the pressure sensors, the vol-

ume dimensions and the diameter measurement. It is

to be reminded that the pressure sensors are less ac-

curate for low pressure readings. From the analysis of

the deviation between experimental and numerical re-

sults (Figure 9), one can clearly see that the deviation

is higher for pressure measurements performed at nom-

inal pressures around the reading limit of the CDG (low

pressures). Nevertheless, even for low pressure measure-

ments, the deviation between numerical and experimen-

tal is always lower than 4%. In the pressure regions

where the CDG sensors are more accurate, that is for

higher pressures at the inlet tank (upstream), the de-

viation is always lower than 0.5%, at exception of the

measurements performed at δm = 0.63 where the devi-

ation is slightly higher. Let us notice that the different

volume size configuration gives always rise to the higher

deviation between experimental and numerical. For this

case the downstream measurements are not only carried

out at the limits of the CDGs sensibility but also the

pressure variation with time is much faster in respect

to the same volume size configuration, possibly adding

up in measurement uncertainties. This remark can be
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Fig. 8 Comparison between numerical and experimental results of the pressure variation with time in the inlet and outlet tanks.
All comparisons where performed for nitrogen at different mean rarefaction conditions. Left column: first case configuration
V0 = 86.92ml and V1/V2 = 0.9926. Right column: case 2 V0 = 24.62ml and V1/V2 = 6.354.
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Fig. 9 Deviation of experimental results in respect to numerical results for the pressure variation with time in the inlet (up-
stream) and outlet (downstream) tanks. All comparisons where performed for nitrogen at different mean rarefaction conditions.
Left column: first case configuration V0 = 86.92ml and V1/V2 = 0.9926. Right column: case 2 V0 = 24.62ml and V1/V2 = 6.354.
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Fig. 10 Comparison between numerical and experimental results of stationary mass flow rates as a function of rarefaction for
several pressure differences imposed for nitrogen. The uncertainties associated to the measurement are smaller than the size
of the points (∆Ṁ/Ṁ = 3%)

confirmed by comparing the deviations of δm = 0.63

and δm = 0.33 for the inlet tank case: the deviation is

lower for the different volume size configuration since

the pressure variation with time speed in this scenario

is lower in respect to the same volume size case, even if

the nominal pressures of both experiments are compa-

rable. In addition, the pressure variation with time is

highly influenced by the volume ratio between the two

tanks, therefore, an additional source of uncertainty is

introduced by the measurement of the tanks volume ra-

tio, which can be particularily delicate when the ratio

between both volumes is high. Nevertheless, let us re-

mind the reader that the pressure variation with time

results for different volumes configuration have not been

used in order to extract conductance and transient mass

flow rate values when such high initial pressure ratios

are imposed (section 3.2.4).

Another possible reason of the small difference between

experiments and numerical results could be due to the

non-negligible effects of the gas/surface interactions at

low rarefaction levels. A non complete accommodation

at the wall could play a significant role in the variation

of pressure with time, too. Even if it has been found

that for this tube the tangential momentum accommo-

dation for nitrogen in the case of metallic surfaces can

be slightly less than unity [Silva et al, 2016], the experi-

mental results were compared to BGK results obtained

for a tangential accommodation coefficient α = 1, that

is for a complete diffuse gas accommodation at the sur-

face.

5.2 Stationary mass flow rate

From the non stationary results obtained it is also pos-

sible to extract stationary mass flow rate results by

means of the conductance results obtained in Section

4.2. Therefore, we here show results of stationary mass

flow rates obtained by using the dynamic constant vol-

ume technique and we compare them to results ob-

tained numerically from the BGK model kinetic equa-

tion (Graur and Sharipov [2008]).

Let us remember that the conductance, for a fixed tube

geometry, varies only as a function of the mean rar-

efaction (or mean pressure) and of the gas used. This

means that the conductance does not depend on the

initial pressure difference imposed.

Therefore, in order to extract a stationary mass flow

rate, once the conductance has been measured for a
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Nitrogen

δm C [m3/s] × 107 δm C [m3/s] × 107

338.3 32.04 11.06 1.855
276.7 26.35 8.691 1.639
229.4 21.96 7.238 1.517
185.0 17.88 5.968 1.397
153.6 15.04 5.037 1.317
123.2 12.36 4.109 1.237
100.1 10.16 3.746 1.211
83.78 8.650 2.956 1.150
67.36 7.088 2.461 1.127
55.34 5.954 2.031 1.095
45.10 4.994 1.849 1.046
35.87 4.141 1.476 1.036
36.23 4.179 1.155 1.039
29.52 3.552 0.985 1.015
24.20 3.056 0.750 1.033
19.54 2.625 0.632 0.986
16.29 2.332 0.506 0.993
13.73 2.097

Table 3 Values of Conductance C as a function of the mean rarefaction parameter δm for nitrogen.

given rarefaction condition, one can reduce eq. (22) in

the limit of t→ 0 to

Ṁ =
C

RT
∆p0, C = f(δm, gas). (24)

If one knows the conductance for one precise rarefaction

condition, one can obtain the mass flow rate along the

tube for an arbitrary difference of pressure imposed. For

example, for an experiment performed with nitrogen at

an initial pressure difference of ∆p0 = 133.5Pa and

mean rarefaction δm = 4.1, the conductance obtained

was C = 12.37×10−8m3s−1 (see Table 3). This conduc-

tance value was obtained from one single experiment,

nevertheless, with this value it is not only possible to

extract the mass flow rate that corresponds to the ini-

tial pressure difference of the experiment, but also the

mass flow rates for lower or higher pressure differences,

as shown in Figure 10.

This property which is characteristic of the conduc-

tance parameter is very useful, since normally mass flow

rates engendered by very low pressure differences are

extremely difficult to measure. Nevertheless, with this

technique one could apparently measure mass flow rates

at arbitrary pressure differences imposed. The here pre-

sented mass flow rate measurements have been calcu-

lated for ∆p = 100Pa, ∆p = 10Pa and ∆p = 1Pa, but

other pressure differences could have been used. More-

over, the methodology suffers of no apparent accuracy

limitations in within the three order of magnitudes of

pressure differences tested. It is possible to observe that

we obtained very stable results that match with great

accuracy the numerical results obtained by means of

BGK. The uncertainties are the same as the ones de-

clared in Section 4.2 for the conductance measurements.

6 Conclusions

This work is a first effort to experimentally analyze

transient rarefied gas flows through long tubes. This

study is aimed to add knowledge on time-dependent

micro gas flows which is at the present moment lack-

ing in the literature. Specific applications of transient

micro flows could be applied to gas separators, micro

chromatography, oscillating micro actuators and others.

Of novelty and particular importance is the new method-

ology proposed in order to extract from a theoretically

derived exponential expression characteristic times of

single experiments which can characterize the relax-

ation phenomenon of pressure variation with time as

a function of gas molecular weight and gas rarefaction.

The new methodology differs from the classic constant

volume technique since it does not suffer of limitations

in respect to the time scale needed in order to perform

the measurement: in the classic technique a stationary

assumption and a proper time interval were necessary

in order to perform stationary mass flow rate mea-

surements. The dynamic methodology can easily per-

form transient mass flow rate measurements through a

micro-device in a stable and repeatable manner. Fur-
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thermore, the technique offers the possibility to asso-

ciate the characteristic time of the experiment to the

conductance of the tube for a given gas. This new method-

ology could be used as an efficient and real-time micro

gas mass flow meter as it allows to measure at any in-

stant transient gas flows that are far lower in dimensions

in respect to the measurements performed by mass flow

meters that are currently commercially available.

The here proposed study has been conducted for fixed

parameters such as the diameter and length of the tube.

It was observed that the pressure relaxation phenomenon

depends greatly on gas rarefaction and its speed can

vary as much as 10 folds from transition to hydrody-

namic regime. If different gases are compared at same

rarefaction conditions, the lighter gas is always faster

to relax to equilibrium in respect to a heavier gas. The

mass flow rate variation with time behavior as a func-

tion of the gas rarefaction and molecular weight was

analyzed, too.

Moreover, the dynamic constant volume technique of-

fers the possibility to extract stationary values of mass

flow rate by means of the conductance C, which was

obtained from the time-dependent experiments. It was

possible to obtain a large spectrum of results from a

reduced number of experiments performed. This final

result of the paper represents a significant accomplish-

ment.

Finally, the pressure variation with time experimen-

tal results were compared to results obtained from the

BGK kinetic model equations and the agreement is ex-

cellent for flows in slip and transitional regime while the

comparison is good for flow tending towards free molec-

ular regime. To conclude, the stationary experimental

results of mass flow rate give an excellent agreement in

respect to the BGK kinetic model.
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Mass flow rate measurements in gas micro flows. Ex-

periments in fluids 41(3):487–498

Ewart T, Perrier P, Graur I, Méolans J (2007) Tan-
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