
This version is available at https://strathprints.strath.ac.uk/61115/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Speech errors are significantly more common in children with autism than those without (Wren et al., 2016, Cleland et al., 2010; Shriberg et al., 2001).

The cause is not well understood.

Speech requires the intricate control of the tongue.

• Significant evidence that children with autism have movement difficulties, in particular fine movement (hands, fingers, toes etc.) (Fournier et al., 2010).

• Relationship between fine movement of tongue and other parts of body relatively unexplored.

Partly due to the difficulty in measuring speech movements

• The tongue, is largely hidden from view during speech.

• Ultrasound Tongue Imaging measures movement of the tongue and compares the type of movements (e.g. jerky, smooth) (Cleland et al., 2016).

• The proposed study will use ultrasound to compare tongue movements made by children with autism with typically developing children.

Ultrasound

• Ultrasound Tongue Imaging allows the investigation of tongue movement.

• The ultrasound probe is placed under the child’s chin and stabilised using a headset (Figure 1).

• Ultrasound waves are sent into the mouth and reflected back when they reach the air above the tongue surface.

• The ultrasound image produced is from mid-sagittal view (Figure 2)

Conclusion

• Higher rates of speech errors and their relationship to fine movement difficulties is still relatively unexplored in autism.

• This methodology using ultrasound tongue imaging will produce new information about otherwise unseeable movements of the tongue and types of speech errors produced by children with autism.

• Answering some of these questions will increase our understanding of the difficulties faced by people with autism.

• It will also impact the type of speech therapies some children with autism will receive to help improve their speech intelligibility.

Ultrasound Analysis is carried out on Advanced Articulate Assistant Software (AAA; Articulate Instruments Ltd, 2012; Figure 3). This software allows automatic tracking of tongue movement to reveal the mathematical attributes of the tongue shape to gain information about the trajectory of the tongue. This is done by plotting points of the tongue surface onto a graph as x-y coordinate (Figure 4).

References