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In this paper we continue efforts aimed at modeling jet noise using self-consistent analytical approaches 
within the generalized acoustic analogy (GAA) formulation. The GAA equations show that the far-field 
pressure fluctuation is given by a convolution product between a propagator tensor that depends on the (true) 
non-parallel jet mean flow and a generalized fluctuating stress tensor that is a stationary random function of 
time and includes the usual fluctuating Reynolds’ stress tensor as well as enthalpy fluctuation components. 
Here, we focus on approximating the propagator tensor by determining an appropriate asymptotic solution 
to the adjoint vector Green’s function that it depends on by using an asymptotic approach at all frequencies 
of interest for jet noise prediction. The Green’s function is then rationally approximated by a composite 
formula in which the GSA (Goldstein-Sescu-Afsar, J. Fluid Mech., vol. 695, pp. 199-234, 2012) non-parallel 
flow Green’s function asymptotic solution is used at low frequencies and the O(1) frequency parallel flow 
Green’s function is used for all frequencies thereafter. The former solution uses the fact that non-parallelism 
will have a leading order effect on the Green’s function everywhere in the jet under a distinguished scaling in 
which the jet spread rate is of the same order as the Strouhal number for a slowly-diverging mean flow 
expansion. Since this solution, however, is expected to apply up to the peak frequency, the latter O(1) 
frequency Green’s function in a parallel flow must be used at frequencies thereafter.  

We investigate the predictive capability of the composite Green’s function for the prediction of 
supersonic axi-symmetric round jets at fixed jet Mach number of 1.5 and two different temperature ratios 
(isothermal & heated) using Large-eddy simulation data. Our results show that, in the first instance, excellent 
jet noise predictions are obtained using the non-parallel flow asymptotic approach, remarkably, up to a 
Strouhal number of 0.5.  This is true for both heated and un-heated jets. Furthermore, we develop the 
analytical approach required to extend this solution by appropriate asymptotic approximation to O(1) 
frequencies. 
 
 
Nomenclature: 

 c∞   =  ambient sound speed 

 DJ  = nozzle diameter 
g  = Green’s function 

 Iw  = acoustic spectrum 

 k  = turbulent kinetic energy 

  k1  = streamwise wavenumber 
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 li  = characteristic length scale 

Ma  = jet acoustic Mach number 
p  =  pressure 
t  = time 
T  = averaging time  
Uc  = convection velocity 
V  = source volume 
vi  = velocity vector 
 x  = observer location 

 y  =  source location 
γ  =  specific heat ratio  

δ ij  = Kronecker delta  

ε  = turbulence dissipation rate   
η  = separation vector 
ρ  = density 
θ   =  polar angle measured from jet axis 
τ  = time delay 
ω  = radian frequency 
∇  = gradient operator  
| • |  = absolute value 
Subscripts 

  (i, j,k,l) = tensor indices  = (1,2,3)  
⊥  = transverse component  
Superscripts 
a  = adjoint 

 = time average 
'  = fluctuating quantity  

   !  = Favre average 
∗  = complex conjugate 
 

I. Introduction 
 

Ever since its inception in 2003, Goldstein’s generalized acoustic analogy [2] has served as the most 
comprehensive and rational basis for modeling jet noise using an analogy approach of the type first invented by 
Lighthill [1] and in which the turbulence in the jet is assumed to be a known function that is modeled 
appropriately. The approach requires calculation of the adjoint vector Green’s function of the linearized Euler 
equations for an, in general, non-parallel mean flow that is at O(1) Mach numbers. This solution is then used to 
calculate the propagator tensor that enters the far-field acoustic spectrum formula as a convolution product with 
the auto-covariance tensor of a generalized stress tensor that is the assumed structure of the near field jet 
turbulence and which itself reduces to the fluctuating Reynolds stress in the absence of enthalpy fluctuations.  
 In this paper we use the Goldstein-Sescu-Afsar (2012) asymptotic theory [3]for the adjoint vector Green’s 
function in non-parallel flows at low frequencies. The GSA theory showed that non-parallelism enters the 
leading order solution for the adjoint Green’s function vector and therefore the propagator tensor when time 
variations are sufficiently slow in the sense that jet spread rate (which is taken to be an asymptotically small 
parameter) is the same order as the Strouhal number. This distinguished scaling gave the correct qualitative 
structure of the propagator when compared to the numerical solution of the full linearized Euler equations [3]. In 
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recent work, Afsar et al. [11] &[14] showed that the same theory, remarkably, provides excellent predictive 
capability for jet noise up to the peak frequency. In the latter study, the GSA theory (which was originally 
formulated for an isothermal jet flow) was extended to heated jets. The mean flow and turbulence statistics in 
that study was found using LES of two jets a fixed jet Mach number of 1.5 with different temperature ratios. The 
LES solutions were reported in Brès et al. 2012 & 2016 (refs. [12] & [13] respectively).  
 In this paper our aim is two fold: to summarize, in the first instance, the results obtained in Afsar et al. [14]. 
One should be aware of the importance of the results in that because (as opposed to the results in Afsar et al. 
[11]), it was found here that the asymptotic approach continues to provide excellent predictive capability up to a 
Strouhal number of 0.5 or 0.6, which is a region of frequency space thought to be more of O(1) scale than 
asymptotically small values.  Secondly, our aim is to develop the formalism to extend the Afsar et al. [14] 
analysis by including O(1) frequency parallel flow Green’s function (i.e. the solution to Rayleigh’s equation), 
which will ultimately be part of a composite formula for the adjoint vector Green’s function in which the GSA 
solution appears at low frequencies for only a single propagator (defined below) component that possesses the 
dipole-like acoustic efficiency that Goldstein first discovered in 1975 and which was subsequently re-discovered 
within the context of the GAA. The paper begins with a summary of the low frequency part of the composite 
Green’s function formula (i.e. GSA theory) within the GAA equations followed by a short discussion of the Brès 
et al. test cases and the results obtained in Afsar et al. [14].  
 

II. Composite formula for Adjoint Green’s function vector 

2.1 Summary of Goldstein’s generalized acoustic analogy approach 
The details here follow from Goldstein [2], G&L and GSA.  Suppose that all lengths have been normalized by some 
characteristic nozzle radius,  rJ , all velocities by the mean jet exit velocity  U J

. Let the pressure p , density ρ , 

enthalpy h  and speed of sound c  satisfy the ideal gas law equation of state 
 

                                                          p = ρ c2 γ , h = c2 (γ − 1)                                                                           (1) 
 

where γ  denotes the specific heat ratio. The acoustic spectrum at the observation point    x = {x1, x2 , x3}  is given by 
Fourier transform  

                                          
   
I
ω

(x) ≡
1

2π
eiωτ ′p (x, t) ′p (x, t + τ)

−∞

∞

∫ dτ ,             (2) 

   

of the far-field pressure auto-covariance    ′p (x, t) ′p (x, t + τ) .  The acoustic spectrum at the far-field point,  x , due to 
a unit volume of turbulence at field point     y ={y1, y2 , y3} in the jet is given by 

 

                                                        

   
I
ω

(x) = I
ω

(x | y) d y
V ( y)
∫ ,                           (3) 

 
where V (y)  is the entire source region,  ′p ≡ p − p  and over-bars are being used to denote time averages. G & L 
showed that  

                         

    
Iω (x | y) = (2π )2Γλ j (x | y;ω ) Γκ l

* (x | y + η;ω )Hλ jκ l ( y,η ,ω ) dη
V ( y)
∫   .                                 (4)   

Asterisks denote complex conjugate and the Einstein summation convention is being used with the Greek indices 
ranging from one to four and the Latin indices from one to three. The mean flow now enters the problem through the 
propagator  
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Γλ j ( y | x;ω) ≡

∂Gλ ( y | x;ω)

∂ y j

− (γ − 1)δλ k

∂ !vk

∂ y j

G4 ( y | x;ω)                                        (5) 

that is a function of the Fourier transform  

                                 
   
Gλ ( y | x;ω) ≡

1

2π
eiω(t−τ)gλ4

a

−∞

∞

∫ ( y,τ | x, t)d(t − τ),    λ=1,2,...,5                                              (6) 

of the 4th fourth component adjoint vector Green’s function    gν4
a ( y,τ | x ,t),   ν = 1,2, ...,5  for the  linearized Euler 

equations that appear on the left sides of the five generalized acoustic analogy equations (see Goldstein 2003 and 
equations (2.18)-(2.20) and equations (3.1)-(3.3) of G&L). Dowling et al (1978) show that the pressure-like adjoint 

Green’s function,    g44
a ( y,τ | x ,t) , possess incoming wave behavior at infinity in the   ( y,τ)  co-ordinates (since the 

adjoint Green’s function corresponds to the usual direct Green’s function in reverse time) and is weakly causal in 
time; i.e. decays at τ → ∞ . Equations (4.8)-(4.10) of G&L show that the Fourier transformed vector Green’s 

function,    Gλ ( y | x;ω) , satisfies the adjoint equations   
 

                                    
   
−
!DGi

Dτ
+ G j

∂ !v j

∂ yi

− c2" ∂G4

∂ yi

+ (γ − 1) XiG4 −
∂G5

∂ yi

= 0                                                         (7) 

                                    
    
−
!DG4

Dτ
−
∂Gi

∂ yi

+ (γ − 1)G4

∂ !v j

∂ y j

= δ (x − y)δ (t − τ )                                                             (8) 

                                          
   
−
!DG5

Dτ
+ XiGi = 0                                                                                                  (9) 

where the observation point  x  is in the far field. Tilde denotes the Favre-average via usual relation,    i
! ≡ (ρi) ρ  of 

any flow quantity;   vk ( y,τ) is the flow velocity and     c
2! ≡ γ p ρ is the mean flow sound speed squared. The mean 

flow convective derivative is defined by     
!D Dτ ≡ iω + !vi ( y)∂ ∂ yi

 and  X i ≡ !D !vi Dτ  denotes the mean flow 

advection vector. Reciprocity theorem (Morse & Feshbach, p.873) shows that the dependent variable  y  in 

   gν4
a ( y,τ | x ,t) corresponds to the actual physical source point while  x  corresponds to the observation location.   

   The tensor 
   Hλ jκ l

,  -- for which suffixes   (i, j,k,l) = (1,2,3)
 
and  (λ,κ) = (1,2,3,4) -- in Eq. (4) is related to the 

Fourier transform  

                     
Hλ jκ l

( y,η ,ω ) =
1

2π
e− iωτ Rλ jκ l

( y,η ,τ )
−∞

∞

∫ dτ                                                          (10) 

  of the generalized Reynolds stress auto-covariance tensor  

                       

   
Rλ jκ l ( y ,η ,τ ) ≡ lim

T→∞

1

2T
ρ ′vλ ′v j − ρ ′vλ ′v j
⎡⎣ ⎤⎦ ( y,τ 0 ) ρ ′vκ ′vl − ρ ′vκ ′vl

⎡⎣ ⎤⎦ ( y + η ,τ 0 + τ ) dτ 0

−T

T

∫    (11) 

by the linear transformation    Hλ jκ l
= ε

λ j ,σ m
H

σ m γ n
ε
κ l ,γ n  where   ′vλ ≡ vλ − !vλ denotes a generalized, four-dimensional 

‘velocity’ fluctuation, with   vi = (v1,v2 ,v3)  being the ordinary fluid velocity and 

′v4 (y,τ ) ≡ (γ − 1)( ′h + ′v 2 2) = (c2 ′) + ′v 2 (γ − 1) 2  where  ′h  is the fluctuating enthalpy (G&L [4]). (c2 ′) denotes 

the fluctuation in the squared sound speed and ′v4 (γ − 1)  denotes the moving frame stagnation enthalpy fluctuation. 
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    !vk ( y)  denotes the steady Favre-averaged flow velocity and the tensor,   
ελ j,σm , is defined by  outer product of 

appropriate unit tensors   
ε
λ j ,σm

≡ δ
λ σ
δ

j m
− δ

λ j
δ
σm

(γ − 1) 2 .  

The acoustic spectrum per unit volume is given by the general formula in Afsar et al. (2011) [8]: 
 

                       

    
Iω (x | y) = (2π )2Γλ j (x | y;ω ) Γκ l

* (x | y + η;ω )Hλ jκ l ( y,η ,ω ) dη
V ( y )
∫  .                                    (12)   

It should be borne in mind that, Eqs. (4) & (5) are completely general and apply to any localized turbulent flow, 

even in the presence of fixed solid surfaces, say    S = S( y) , as long as    gν4
a ( y,τ | x ,t) is assumed to satisfy   

   n̂igi4
a ( y,τ | x, t) = 0   for y  on S  where   n̂i

denotes the unit normal to    S( y) . 

Note also that since the dimensionless ratio, ′v4 (| ′vi |UJ ) = O( ′vi UJ ) for cold jets (where Ma = O(1) ) the 

enthalpy component ′v4 (y,τ )  should, therefore, be small for cold jets and can be set to zero in    Rλ jκ l ( y ,η ,τ )  which 

will equal zero whenever  (λ ,κ ) = 4  (G&L, p. 307). In this paper, we consider the momentum transfer (i.e. non-heat 

related) components of 
   Rλ jκ l ( y ,η ,τ )  only. The resulting acoustic spectrum formula simplifies to that given by 

G&L and Leib and Goldstein [10]. The propagator solution 
   
Γλ j (x | y;ω )

	
  

will be found using matched asymptotic 

expansions as follows and, in particular, we analyze its ‘1-2’ component.

	
  
2.2 Asymptotic structure of jet mean flow  
Following G&L, GSA allow the (axi-symmetric) mean flow in the jet region to have small spread rate, say 

   ε ≪ O(1) , so that it varies on the slow streamwise length scale,   Y ≡ εy1 . In this case, it must expand as: 

 

                                              !v( y) = {U (Y , yT ),εVT (Y , yT )}+ ε{U (1) (Y , yT ),εVT
(1) (Y , yT )}+ ....                                  (13) 

 

        ρ( y) = ρ(Y , yT ) + ερ (1) (Y , yT ) + ...,                (14) 
                                      

                                                    c
2! ( y) = c2! (Y , yT ) + ε (c2! )(1) (Y , yT )...,                (15) 

 

                                                    p( y) = const.+ε p(1) (Y , yT ) + ...                                                     (16) 
 
where the mean flow advection vector,  X i

 , commensurately, expands as 
 

                                         X ( y) = {ε X1,ε 2 XT }+ ε{ε X1
(1) ,ε 2 XT

(1)}+ ....                                          (17) 
 

The mean flow separates out into an inner region, given by Eqs. (13) --(17) for    r ≡| yT |= y2
2 + y3

2 = O(1) ,  and an 

outer region where  the expansion break downs for   R ≡ εr = O(1)  for a cylindrical polar co-ordinate system 

   yT
= (r ,ψ)  with origin centered at the nozzle exit plane at the jet center-line and the observation point    

x
T
= (R,Ψ)  

at a fixed point in the far-field relative to that plane. 
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2.3 Low frequency propagator solution for Strouhal numbers,   St ∼ ε ≪O(1)   

GSA showed that non-parallel flow has an   O(1)  effect on the solution to    Gλ ( y | x;ω)  everywhere in the flow at 

sufficiently low frequencies when time variations are of the same order as the streamwise variations in the mean 

flow, i.e. when    gν4
a ( y,τ | x ,t)  depends on τ

 
 through    !T ≡ ετ and at the distinguished frequency scaling when the 

Strouhal St = fDJ U J  number (based on jet diameter) is of the order of the jet spread rate,   St ∼ ε  in the solution to 

   Gλ ( y | x;ω) . The propagator solution is then defined at the particular scaled temporal frequency,   Ω =ω ε = O(1)

where    ε ≪O(1)  is a small parameter. The asymptotic structure of the adjoint Green’s function is then identical to 
the mean flow in that it also divides into an inner solution in the region where the radial distance   r = O(1)  and into 
an outer solution in the region where   R = εr = O(1) . The richest inner equations are found by the non-trivial 

dominant balance of    gν 4
a ( y,τ | x, t)  given by Eqs. 5.5 and 5.6 in GSA. The scaled Fourier transform of 

   gν 4
a ( y,τ | x, t)  for ν = (1,4,5) then satisfies Eqs. (18)–(21) in Afsar et al.  [11] for the leading order azimuthal mode 

expansion since higher order azimuthal modes produce an asymptotically small (i.e.   o(ε ) ) correction to these inner 

equations. However, as shown in GSA, tremendous simplification can be achieved by taking   (Y ,U )  as the 

independent variables of choice rather than   (Y ,r ) . The implicit function theorem shows that    y = (Y ,r )  can be 

implicitly related to the field space    y = (Y ,U (Y ,r )) and that the Green’s function variable 

   Gi ( y | x;Ω) = (G1,G4 ,G5 )( y | x;Ω)  then depends on   ( y;Ω)  through field space   (Y ,U (Y ,r );Ω) ≡ (Y ,r;Ω) . GSA 

showed that the one-to-one transformation of independent variables,   (Y ,r ) → (Y ,U ) , can be used together with the 
chain rule to combine the particular inner equations in to the second order hyperbolic PDE:  
 

                                        
   
c2! ∂

∂U
1

c2! D0v
⎛
⎝⎜

⎞
⎠⎟
+ "X1

∂2 v

∂U 2 = 0                                                                                   (18) 

in which    Y = const.,  dU dY = !X1 U  are characteristic curves (Garebedian 1998, pp. 121-122). This equation 

requires that    c
2! (Y , r ) = f (U )  and satisfies Crocco’s relation [6] for the composite Green’s function variable

   v ≡ c2! "G4 + "G5 . But Afsar et al. [14] utilized the Crocco-Busemann relation (see Eq. 2.4c in Leeshafft et. al. [7]), 

which applies when the jet flow is heated, and showed that the mean speed of sound is still a function of   U (Y ,r ) . 
Therefore, Eq. (18) will continue to hold in such a case. The advantage of solving this equation to determine the low 
frequency structure of the adjoint linearized Euler equations (Eqs. 4.8 - 4.10 of G&L) is clear. The hyperbolic 
structure of Eq. (18) shows that it is unnecessary to impose a downstream boundary condition. Fig. 1 in GSA 
indicates how information propagates to both the left and the right from the   U = 0  boundary and that no boundary 
conditions are required on the   Y = 0  and  Y → ∞  boundaries (i.e. no inflow boundary condition is required here). 
Hence the solution for   v (Y ,U )  is now uniquely determined by the outer boundary conditions (i.e. by matching to 
the inner limit of the outer solution using Van Dyke’s rule), 

                                                             v (0,Y ) → −iΩc∞
2 e

− iΩY cosθ/c∞
                                                          (19) 

                                
  
∂v
∂U

(0,Y ) → −iΩc∞ cosθe
− iΩY cosθ/c∞

  with Y ≥ 0                                                                  (20) 
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on the non-characteristic curve   U = 0  (where, as indicated above,   U → 0  corresponds to  r → ∞ ). The coefficient 

   
!X1 ≡ !DU Dτ is the Fourier transform streamwise component of the mean flow advection vector (Eq. 5.15 in GSA) 

and 
  
D0 ≡ iΩ +U ∂ ∂Y  in (18). 

III. Mean flow structure of round jets at constant Mj and varying temperature ratio 
 
We consider the effect of heating and supersonic flow on the far-field noise using large-eddy simulations (LES) 
database of two axi-symmetric round jets at a fixed jet Mach number of, Mj = 1.5 within the GAA approach. These 
solutions were reported in Brès et al. [12] (see also Brès et al. [13]) and identified by the designations B118 & B122 
for the unheated and heated configurations respectively. The operating conditions are summarized in table 1 below.  

 
Experimental 

(Schlinker et al. 
(2012)) 

LES  
test case 

Description Jet Mach 
Number, Mj 

Temperature 
ratio, TR 

Acoustic Mach 
Number, Ma 

B118 A1 Isothermal 
ideally-expanded 

1.5 1.0 1.5 

B122 A2 Heated ideally-
expanded 

1.5 1.74     1.98 
 

 
Table 1. Brès et al. (2012) test cases 

3.1 Mean flow 
 
The spatial development of the streamwise component of the mean flow   U (Y ,r )  , radial component of the mean 

flow Vr (Y , r)  and the advection component 
   
!X1(Y ,r )  are shown in Figure 1, where the streamwise coordinate 

was scaled by the potential core length, and the radial coordinate by the nozzle radius. As expected, heating 
reduces the potential core length of the jet (Figs. 1a & 1b) as well as increasing the magnitude of 

   
!X1(Y ,r )  along 

the shear layer of the jet (Figs. 1e &f). 
               

 
 
 
 
 
 
 
 
 

 
(1a). Isothermal (B118)                                                    (1b). Heated (B122) 
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(1c). Isothermal (B118)                                                    (1d). Heated (B122) 

                      
 

Figure 1. Streamwise component of mean flow. Spread rate = 0.12. 
 

3.2 Turbulence structure for the peak radiated jet noise 
Afsar et al. [11] showed that the 

   R1212
( y,η,τ)  component provides the maximum contribution to the peak jet 

noise at small observation angles to the jet axis. Figure 2 below shows its normalized structure with time delay τ  
at various streamwise spatial separations  η1 . The main indication of these results is that the heating of the jet 

appears to introduce little change in the decay of 
   R1212

( y,η,τ) in the spatial location of importance for low 

frequency noise (i.e.   4 < y1 DJ ≤ 8 ). Moreover, the anti-correlation of 
   R1212

( y,η,τ) , where the decay of 

   R1212
( y,η,τ)  is negative (commonly refered to as de-correlations or negative loops by various authors) is largely 

negligible in interval,   4 < y1 DJ < 12 , and is therefore ignored in our mathematical model. 

 

          (2a).    y1 DJ = 2                    (2b).   y1 DJ = 4                 (2c).    y1 DJ = 6                    (2d).   y1 DJ = 8        

 

                   (2e).                                      (2f).                                              (2g).                                        (2h). 
 
Figure 2. Normalized correlation function, 

   R1212
( y,η,τ)  along the shear layer. Top row is isothermal (B118) jet 

and bottom row is heated (B122). 
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IV. Spatial structure of dominant propagator component & low frequency jet noise predictions 
 

In Figs. 3a & b we show the noise predictions for B118 & B122 jets using a formula in which only the 
momentum transfer component 

   R1212
( y,η,τ)  of the generalized auto-covariance tensor 

   Rλ jκ l ( y ,η ,τ )  is retained.  

This component, as mentioned above, corresponds to the peak jet noise in an isothermal jet and is the first test of 
the present asymptotic formulation we perform preliminary calculations to assess whether this component alone 
can  (with necessary tuning of the parameters) predict the heated jet noise spectrum. The acoustic spectrum 
formula is given by Eq. (38) in Afsar et al. [11],  

            
Iω

LOW (x | y) →
ε

2c∞
2 | x |

⎛

⎝
⎜

⎞

⎠
⎟

2

| !G1r ( y ;ω) |2 Φ1212
* ( y , k1, kT

2 ,ω)     as | x |→ ∞  .                           (21) 

It has been proved there (as well as in numerical computations in Karabasov et al. 2010) that the dominant 

propagator component is     |
!G1r ( y ;ω) |  where    Φ1212

* ( y , k1, kT
2 ,ω)  is the complex conjugate of the space-time 

Fourier transform of the fluctuating Reynolds stress auto-covariance tensor (11) with suffixes suitably contracted 
(see appendix A of [11]). 
 Figure 3 shows the contours of     |

!G1r ( y ;ω) | at the peak frequency of St = 0.2 for B118 and B122 jets. The 

convergence of the numerical algorithm applied to inner equation (18) was analyzed in GSA and Afsar et al. 
(2016), and it was found to be within 5% at almost all regions of the jet, with only slight differences in results 
coming near the inner boundary as U → 1. In Figures 4 (a,b) we show contour plots of the acoustic spectrum 

rIω
LOW . The indication here is that the peak noise source lies near    y1

∼ 6  (or    Y ∼ 1 ). The level of   rIω
LOW is 

greater with heating (at fixed jet Mach number), which is consistent with the noise measurements of a heated 
flow at constant jet Mach number that shows an increase in sound of almost 10dB with temperature rise.  

 
 
 
 
 
 
 
 
 

 
(3a). Isothermal (B118)                                                    (3b). Heated (B122) 

Figure 3. Contours of     |
!G1r ( y ;ω) |  at peak Strouhal number = 0.2. 

 
 
 
 
 
 
 

(4a). Isothermal (B118)                                                    (4b). Heated (B122) 
 

Figure 4. Contours of    rIω
LOW (x | y)  at peak Strouhal number = 0.2. 
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also shows very little di↵erence in the streamwise space-time structure of R1212, we keep
(c0, c1) = (0.15, 1.0) the same in both cases and vary only c2 (where c2 = c3 = c?),
which is related to the transverse length scales. Specifically, we set c2 = 0.17 for B118
and c2 = 0.09 for B122. Remarkably, these parameter values provide accurate predictions
for the cold jet up to St ⇠ 0.5, which is beyond what was obtained by Afsar et al. (2016).

In Figures 6 and 7 we show the acoustic spectrum (dB) for B118 and B122, respectively,
compared against experimental data (see Schlinker et al. (2012), Brès et al. (2012) and
Brès et al. (2016)). As mentioned, the spectrum for the observation angle ✓ = 30 deg
shows very promising agreement with experimental and LES results at low frequencies
(almost up to St = 0.6). When the same set of parameters are used for larger angles
(✓ = 45, 60 deg), the acoustic spectrum predictions (shown in Figure 6) are no longer
in agreement, but this is not surprising since the theory in its current form is supposed
to provide accurate predictions at small observation angles. In Figure 7(b) we show the
senstivity of the 30� prediction for B122 (heated) jet at various values of parameter c2.
Any predictions in the heated case must be interpreted as a first approximation since
Eq. (2.1) does not include auto-variances and co-variances associated with enthalpy flux
and momentum flux/enthalpy flux coupling, respectively (Afsar et al. 2011).

5. Conclusions

Goldstein-Sescu-Afsar postulated that the appropriate distinguished limit in which
non-parallel mean flow e↵ects introduce a leading-order change in the propagator tensor
in the generalized acoustic analogy equations must be when the jet spread rate is of the
same order as the Strouhal number. In this paper we have extended the Afsar et al.
(2016) analysis to show that this approach, i.e., Eq. (2.1), remains valid in heated jets

since the assumption that ec2(Y, r) = f(U) in which ec2 is given by the Crocco-Busemann
relation, continues to remain valid in heated jet flows. Our results have shown that
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and c2 = 0.09 for B122. Remarkably, these parameter values provide accurate predictions
for the cold jet up to St ⇠ 0.5, which is beyond what was obtained by Afsar et al. (2016).

In Figures 6 and 7 we show the acoustic spectrum (dB) for B118 and B122, respectively,
compared against experimental data (see Schlinker et al. (2012), Brès et al. (2012) and
Brès et al. (2016)). As mentioned, the spectrum for the observation angle ✓ = 30 deg
shows very promising agreement with experimental and LES results at low frequencies
(almost up to St = 0.6). When the same set of parameters are used for larger angles
(✓ = 45, 60 deg), the acoustic spectrum predictions (shown in Figure 6) are no longer
in agreement, but this is not surprising since the theory in its current form is supposed
to provide accurate predictions at small observation angles. In Figure 7(b) we show the
senstivity of the 30� prediction for B122 (heated) jet at various values of parameter c2.
Any predictions in the heated case must be interpreted as a first approximation since
Eq. (2.1) does not include auto-variances and co-variances associated with enthalpy flux
and momentum flux/enthalpy flux coupling, respectively (Afsar et al. 2011).

5. Conclusions

Goldstein-Sescu-Afsar postulated that the appropriate distinguished limit in which
non-parallel mean flow e↵ects introduce a leading-order change in the propagator tensor
in the generalized acoustic analogy equations must be when the jet spread rate is of the
same order as the Strouhal number. In this paper we have extended the Afsar et al.
(2016) analysis to show that this approach, i.e., Eq. (2.1), remains valid in heated jets

since the assumption that ec2(Y, r) = f(U) in which ec2 is given by the Crocco-Busemann
relation, continues to remain valid in heated jet flows. Our results have shown that



                                     American Institute of Aeronautics and Astronautics 
  10 

The results below show, remarkably, that the predictions remain in close agrement with the data upto a 
Strouhal number of 0.6 for the isothermal jet (Fig. 3a). Moreover, with heating, the predictions are equally as 
accurate. The parameters associated with the streamwise space and time decay of 

   R1212
( y,η,τ)  have been kept 

the same (which is justfied given the similarity shown in Figs. 2a & 2b) in both predictions. However, any 
predictions in the heated jet case must be interpreted as a first approximation since Eq. (38) in Afsar et al. [11] 
does not include auto-variances and co-variances associated with enthalpy flux and momentum flux/enthalpy 
flux coupling respectively. Indeed it is true that the ‘low frequency’ sound region of these jets is elongated and 
much more broad band than the subsonic regime. However, the robustness of the asymptotic approach we have 
used here is clear. 
 
 
 

(5a). Isothermal (B118)                                                    (5b). Heated (B122) 
 

Figure 5.   30! spectrum predictions at 
   
x = 100DJ

corresponding to the experiment by Schlinker et al. [15] and 

LES predictions obtained from Brès et al. [12] & [13] 
 
 

 
Note that when the same set of parameters are used 

for larger angles (θ = 45,60 deg), the acoustic spectrum 
predictions (shown in Figure 6 on right hand inset) are 
no longer in agreement, but this is not surprising since 
the model in its current form is supposed to provide 
accurate predictions at small observation angles and 
does not include auto-variances and co-variances 
associated with enthalpy flux and momentum 
flux/enthalpy flux coupling, respectively [8].  

 
 
       
               Figure 6. Breakdown of predictions at larger  
                       angles (same conditions at Fig. 5)   
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0
and (b) sensitivity to c2.

the theory not only provides a means to understand, qualitatively, the e↵ects of non-
parallelism within the acoustic analogy but also provides excellent predictive capability
of the jet noise. The reduced form of the acoustic spectrum formula (equation 19 in (Afsar
et al. 2011)) used here is limited to low frequencies and shallow downstream observation
angles from the jet axis. The results in this paper indicate that the 30� spectrum can be
accurately predicted in both the unheated (B118) and heated (B122) cases, remarkably,
up to a Strouhal number of almost 0.6. While the parameters in the turbulence model
(Eq (2.9)) do require revisiting, particularly to obtain a precise estimation of the length
scales, the approach does show the usefulness of the asymptotic theory as part of a
realistic prediction code. Future work will address these issues, namely to reconstruct
the spectrum of the Reynolds stress auto-covariance component R1212 directly from LES
data without the need of any modeling whatsoever (i.e., by Fourier transforming the
R1212 correlation function data as necessary using Eq (2.6)). In addition, the higher
polar angle predictions can be improved by including the other components of the axi-
symmetric representation of the generalized auto-covariance tensor, R

µj⌫l

, which includes
enthalpy fluctuations when Greek su�xes (µ, ⌫) = 4.
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VI. PROPAGATOR SOLUTION FOR   O(1) STROUHAL NUMBERS 

 
Since Afsar et al. [11] show that, for the round jet, the propagator tensor (5) expands as: 
 

                                      

   

Γ ij ( y | x;ω) = δi1δ j2Γ1r
(0) ( y | x;ω) + O(ε) =

O(ε) O(1) O(ε)
O(ε) O(ε) O(ε)
O(ε) O(ε) O(ε)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ ...                        (22) 

 
where suffix  2  is along radial direction and    Γ1r

(0) (Y ,r | x;ω) = ∂G1
(0) (Y ,r ) ∂r  (and 

    Γ1r
(0) (Y ,r | x;ω) = !Γ1r (Y ,U (Y ,r ) | x;ω)  by the implicit function theorem where   

!Gi (Y ,U (Y ,r )) = Gi
(0) (Y ,r )  and 

where the superscript ‘(0)’ refers to the lowest order azimuthal mode expansion). As mentioned earlier, this 
approximation is well confirmed by the numerical experiments conducted by G&L & Afsar (2010) on a parallel 
mean flow and Karabasov et al. (2010) on the full numerical solution to the adjoint Green’s function equations (here 

written as (7) - (9)) all of which corroborate the asymptotic expansion (22) in that the    Φ1r1r
∗ ( y , k ,ω) contracted with 

  | G1r |2  in (12) dominates the small angle acoustic radiation.  At higher frequencies, however, non-parallelism is 

sub-dominant in the leading order propagator solution and the dipole radiation induced by     
!Γ1r (Y ,U (Y ,r ) | x;ω)  in 

the acoustic spectrum (12) may be approximated by a solution based on a locally parallel flow. This assertion can be 
easily confirmed by taking the limit Ω → ∞ (with spread rate fixed at  ε = O(1) ) in the leading order inner equation 
(18). An obvious distinguished limit for the leading order solution is one in which the streamwise variable is re-

scaled into a region inasmuch as   Y = Ω−1Y  where   Y = O(1) (GSA, p. 221). After changing variables in (18), it is 

immediately clear that the non-parallel flow term is asymptotically small (i.e.   O(Ω−1) ) in this limit. There is ample 
numerical confirmation of the sub-dominance of non-parallel flow effect in the Ω → ∞  limit. See, for example, Fig. 
16a in Karabasov et al. (2010) where the acoustic analogy prediction based on a locally parallel flow Green’s 
function solution is identical to the full numerical calculation of the adjoint equations for frequencies greater than 
1000 Hz (i.e. for Strouhal numbers  > 0.1 , the peak frequency); moreover, in Fig. 16b of Karabasov et al. (2011), 
this overlap occurs at a later frequency of about  > 0.3  after re-scaling by  2π  to be consistent with our definition of 
Strouhal number. 

In the parallel flow limit,   U = U (r )  and 
   
∂ !v j ∂ y j = 0 . Hence,    

!X1 = 0 and adjoint equations (7)-(9) reduce to 

(G&L, p.299): 

                                    
   
−
!DG1

Dτ
− c2" ∂G4

∂ y1

−
∂G5

∂ y1

= 0                                                         (23) 

                                    
   
−
!DGi

Dτ
+ G1

∂U
∂ yi

− c2" ∂G4

∂ yi

−
∂G5

∂ yi

= 0,    i = (2,3)                                                       (24) 

                                    
    
−
!DG4

Dτ
−
∂Gi

∂ yi

= 1
2π δ (x − y)                                                                                       (25) 

                                          
   
−
!DG5

Dτ
= 0                                                                                                              (26) 

 
where    !D Dτ ≡ iω +U ∂ ∂ y1 . Since the frequency is order-one (inasmuch as,   St = O(1) ), the domain of    Gλ ( y | x;ω )  
no longer separates out into inner and outer regions in  r . But because  x is in the far-field (as   | x |→ ∞ ), the adjoint 
equations (24)-(26) are homogeneous in the jet (i.e., right hand side of (25) is zero) and have coefficients that 
depend on the uniform flow in the far-field region when the Dirac does exist. The latter (Helmholtz equation in  



                                     American Institute of Aeronautics and Astronautics 
  12 

   G4 ( y | x;ω ) ) can then be solved by standard methods (pp. 826-828 of Morse & Feshbach 1953) which we discuss 
briefly for completeness ([9]).  

Taking the convective derivative of (24) and using   i = 1  component of the adjoint momentum equation (24) 
shows that 

                       
   
−
!D2G

i

Dτ 2
− c2" ∂U

∂ yi

∂G4
∂ y1

+
!D

Dτ
∂G4
∂ yi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− ∂U

∂ yi

∂G5
∂ y1

+
!D

Dτ
∂G5
∂ yi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 ,    i = (1,2,3)                                   (27) 

 
But after inserting,   !D Dτ (∂Gλ ∂ yi ) = ∂ ∂ yi ( !DGλ Dτ ) − ∂U ∂ yi (∂Gλ ∂ y1) , it follows that, 
 

                  
   
−
!D2Gi

Dτ 2
− c2" ∂G0

∂ yi

= 0 ,    i = (1,2,3)                                          (28) 

 
where we used Eq. (26) to eliminate    G5 ( y | x;ω )  and where we have put, 

   
G

0
≡ !DG4 Dτ .  Since    Gλ ( y | x;ω )  now 

depends on the streamwise co-ordinates through   x1 − y1  when the mean flow is independent of the streamwise co-
ordinate we can take Fourier transforms in the streamwise direction to give the following 
 

                                      
   
(ω −Uk )2 Ĝi − c2! ∂Ĝ0

∂ yi

= 0 ,    i = (1,2,3)                                                        (29) 

                                    
  
−Ĝ0 −

∂Ĝi

∂ yi

= 1

(2π )2

δ ( R−r )δ (Ψ−ψ )
r

                                                                        (30) 

where, 
 

              
   
Ĝλ ( y

T
| x

T
;ω, k ) ≡

1

2π
e− ik ( x1− y1)Gλ (x1 − y1, y

T
| x

T
;ω)

−∞

∞

∫ d(x1 − y1),    λ=1,2,...,5                                   (31) 

 
We have taken liberties of using the gradient operator symbol, to refer to the Fourier transform of the same operator, 
namely:    ∇ = −ike1+er ∂ ∂r+eψ ∂ r ∂ψ{ }  where tensor suffixes,   i = (1,2,3)  are components of the cylindrical polar 
co-ordinate space with  1  being the streamwise direction,  2 , the radial and  3

	
  
the azimuthal angle. Eq. (26) shows 

that the space-time Green’s function,   g5 ( y,τ | x, t)  is purely convected, i.e.,  g5
= g

5
(τ − y1 U ) , which after taking 

Fourier transforms in the streamwise direction shows that   −i(ω −Uk )Ĝ5 = 0  and therefore that  Ĝ5 (r ,ψ | R,Ψ;ω , k )
must be zero at all   (ω , k ) ≠ 0  other than at the critical layer where  (ω −Uk ) = 0 . Hence the field equations for 

  Ĝλ (r ,ψ | R,Ψ;ω, k ) reduce to solving the two independent equations ([9]): 
 

                                      
   
(ω −Uk )2 Ĝr − c2! ∂Ĝ0

∂r
= 0 ,    i = (1,2,3)                                                                (32) 

           
   

1− c2!

(ω−Uk )2
k2+ 1

r2

c2!

(ω−Uk )2
∂2

∂ψ 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ Ĝ0 +

1
r
∂rĜr

∂r
= − 1

(2π )2

δ ( R−r )δ (Ψ−ψ )
r

                                       (33) 

	
  
for   r = O(1) .  



                                     American Institute of Aeronautics and Astronautics 
  13 

When  r is in the jet region, Eqs. (32) & (33) can be used to solve the Rayleigh equation for    Ĝ0 (see G&L), 
however, as indicated in [9], it is advantageous to retain them as first order equations to avoid differentiating the 
LES mean flow which might be possess small oscillations in regions where the grid density is sparse. Since 

  | x |→ ∞ , variation of parameters (p. 826 of Morse & Feshbach, 1953) and the method of stationary phase shows 

that we may legitimately look for solutions in the jet of the form 
   
Am (θ;ω) !G

0
(r | θ;ω) cos m(Ψ − ψ ) with pre-factor 

identical to the outer-field Helmholtz equation solution (which the above equations reduce to after eliminating   Ĝi ). 
Hence 
 

                          
    
G0 ( y | x;ω) → k∞

2

4π|x|
e− ik∞ ( y1cosθ−|x|)

(−i)mεm Am(θ;ω) !G0
(m) (r ,θ;ω)cos m(Ψ−ψ )

m=0

∞
∑                      (34) 

 
where   εm

= 1  for   m = 0  and   εm
= 2  for   m ≥ 1  and where we have made use of the Jacobi-Anger formula (Eq. 27 

of Bateman 1953, Vol. II) to re-write the azimuthal dependence   eim(Ψ−ψ ) of the basic solutions to (32) & (33) a sum 
over positive modes,

	
  
 m . 

Inserting Eq. (34) (and an equivalent formula for 
   
!G
r
(m) ) into adjoint equations (32) & (33) with Fourier 

transform of the gradient operator given by    ∇
! = −ike1+er (∂ ∂r+1 r )−eψ im r{ } gives two independent ordinary 

differential equations for    
!G0

(m) (r | θ;ω) and  
   
!G
r
(m) (r | θ;ω)  

 

                                       
   

d !G
0
(m)

dr
= k∞

2

ar
2

(1− M (r )cosθ )2 !G
r
(m)                                                                     (35) 

 

                                    
   

d !Gr
(m)

dr
= ar

2 cos2θ

(1−M (r )cosθ )2
+ ar

2(m r )2

k∞
2 (1−M (r )cosθ )2

−1
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
!G0

(m) −
!Gr

(m)

r
                                         (36) 

 
which can be solved numerically by marching forward using Runge-Kutta integration (see Afsar 2009b). In the 
neighborhood around the regular singular point,   r = 0 , the mean flow is nearly constant and the homogeneous form 

of Rayleigh equation in    
!G0

(m) (r | θ;ω) reduces to a Bessel equation    
!G4

(m) (r | θ;ω) ; hence 

   
!G
4
(m) (r | θ;ω) → J

m
(r ) ∼ r m  (Abramowitz & Stegun 1963, p.360; see also Tam & Auriault 1998). Hence the 

numerical integration of (35) & (36) can start with    
!G0

(m) (rstart | θ;ω) → iω(1− M (r
start

)cosθ)rstart
m and   

   
!Gr

(m) (rstart | θ ;ω ) =
iω

(k
∞

2 a
r

2 )(1− M (rstart )cosθ )
mr

start

m−1  (using Eq. (35)). The constant   Am(θ;ω)  in (34) is then found 

by patching it onto the outer (Helmholtz equation) solution: 	
  
 

    
G0 ( y | x;ω) = k∞

2

4π|x|
e− ik∞ ( y1 cosθ−|x|)

(−i)mεm Jm(rk∞ sinθ)+Bm(θ;ω)Hm
(1) (rk∞ sinθ)⎡

⎣⎢
⎤
⎦⎥
cos m(Ψ−ψ )

m=0

∞
∑                

                                         (37) 
at  

r = r
end

 where   
M (r

end
) = 0 . 

 In Figure 7 we show contour of     |
!G1r ( y ;ω) | 	
  based on solution (34) for Strouhal numbers   St = 0.4  
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and   St = 0.8  (isothermal) B118 jet. Since the pre-factor of     |
!G1r ( y ;ω) |  is proportional to  dU dr , the initial shear 

layers are weighted more than the downstream region (consistent with contour plots 15 & 17 in GSA which are at 

observation angle,    θ = 30! ) for   θ = 60!  chosen here to avoid the critical layer singularity which for B118 jet 

occurs at the far-field locations,   θ ≤ cos−1(1 1.5) ≈ 49! . 

	
  
(7a).   St = 0.4                                                                   (7b).   St = 0.8  

 
Figure 7. Contours of     |

!G1r ( y ;ω) |  based on locally parallel flow Green’s function (34) for (isothermal) B118 jet 
 

VI. CONCLUSIONS AND REMAINING ANALYSIS 
This paper is a continuation of previous analysis (AIAA 2016-2804) in which an asymptotic solution to the adjoint 
Linearized Euler Equations (7)-(9) for the true non-parallel jet mean flow at low frequencies was used as a means 
for jet noise prediction under the distinguished limit in which mean flow spreading and rate of jet evolution are of 
same order. We have shown that this same approach (Eqs. (18)-(20)) provides a robust means of predicting 
supersonic jet noise up to Strouhal numbers of 0.6. Our aim is show that when this asymptotic solution is used 
together with the Rayleigh equation Green’s function for a locally parallel mean flow at order-1 frequencies, the 
domain of the prediction model can be extended yet further. Towards this goal, we have solved and validated the 
solution to the latter and aim to use it within the acoustic spectrum formula, Eq. (4). 
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