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Abstract

Since Mao initiated the study of stabilization of continuous-time hybrid stochas-

tic differential equations (SDEs) by feedback controls based on discrete-time state

observations in 2013, many authors have further studied and developed it. How-

ever, so far no work on the pth moment stabilization has been reported. This

paper is to investigate how to stabilize a given unstable hybrid SDE by feedback

controls based on discrete-time state observations, in the sense of H∞, asymptotic

and exponential stability in pth moment for all p > 1. The main techniques used

are constructions of the Lyapunov functionals and generalizations of inequalities.
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1 Introduction

In the past decades, hybrid systems have played a critical role in many applications. As

an important class of hybrid systems, hybrid SDEs (also known as SDEs with Markovian

switching) have attracted increasing attention in recent years. Hybrid SDEs have been

widely used in various fields for modelling systems that may undergo abrupt changes

in practice. An intriguing topic in the study of hybrid SDE is automatic control, with

consequent emphasis being placed on the analysis of asymptotic stability [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12]. In particular, [13, 14] are two of most cited paper (Google citations

583 and 371,respectively) while [15] is the first book in this area (Google citation 855).

Consider an unstable hybrid SDE in the Itô sense

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t), (1.1)

where x(t) ∈ Rn is the state, w(t) = (w1(t), · · · , wm(t))T is an m-dimensional Brownian

motion, r(t) is a Markov chain (please see Section 2 for the formal definitions) which

represents the system mode. When stabilizing the system with a feedback control, a

traditional (or regular) choice of is u(x(t), r(t), t) based on continuous-time observations

of state x(t), and the controlled stable system is

dx(t) =
(
f(x(t), r(t), t) + u(x(t), r(t), t)

)
dt+ g(x(t), r(t), t)dw(t). (1.2)

Nevertheless, such a regular feedback control would lead to high cost and sometimes

it’s unrealistic as the observations are often of discrete-time. As a result, Mao [16]

investigated feedback controls based on discrete-time state observations for this problem.

By choosing a positive constant τ , the controller u(x([t/τ ]τ), r(t), t), where [t/τ ] is the

integer part of t/τ , needs state observations only at times 0, τ, 2τ, · · · , which is more
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realistic and also costs less. Consequently, the controlled system becomes

dx(t) =
(
f(x(t), r(t), t) + u(x([t/τ ]τ), r(t), t)

)
dt+ g(x(t), r(t), t)dw(t). (1.3)

Although the stabilization problem by feedback controls based on the discrete-time

state observations for the deterministic differential equations has already been studied by

many authors (see e.g. [17, 18, 19, 20, 21, 22]), Mao [16] is the first paper to study this

problem for SDEs, which investigated the mean square exponential stabilization. Later,

Mao et.al [23] obtained a better upper bound on observation interval τ . Recently, You

et.al [24] improved the upper bound on τ again, and investigated the H∞, asymptotic

and exponential stabilization in mean square and almost surely. However, so far no work

on pth moment stabilization has been reported yet.

As we know, mean square (p = 2) stability is not enough for some problems and a

wide range of moment order p is needed. On one hand, some research problems require

higher-order moment stabilities. For example, higher moment is frequently required in

finance and digital image process. Moment risk premiums in finance involve the skewness

swaps (p = 3) and kurtosis swaps (p = 4); pseudo-Zernike moments in image processing

techniques could require, say, moment order up to 50 (see e.g. [25, 26, 27, 28]). On

the other hand, some problems only require a lower moment stability. Although lower

moment stability can be implied by mean square stability in some existing paper, our new

theory can achieve the target under weaker conditions at lower cost. For example, mean

square condition is unnecessarily too strong for almost sure exponential stability. By

allowing p < 2, we can stabilize the system in almost surely exponential sense by weaker

conditions than what [24] required. Of course, moment stability analysis of stochastic

systems has been widely and deeply studied (see e.g. [29, 30, 31, 32, 33]). The difference

is that, this paper will use a better controller, which is based on discrete-time state
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observations.

Motivated by the above discussions, the main purpose of this paper is to investigate

how to control a given unstable hybrid SDE to be H∞ stable, asymptotically stable and

exponentially stable in pth moment for all p > 1. Our new established theory enables

the readers to choose p flexibly according to their needs from a wide range (1,∞).

Unlike the mean square case (p = 2), a more general range of moment order brings

more complexity and difficulty to the stabilization problem. For example, it involves

many generalization works of inequalities, and more parameters need to be determined

to choose a good τ for a fixed p.

The remainder of this paper is organised as follows. Section 2 explains the no-

tations, presents our models and assumptions, and defines functions that will be used

later. Section 3 and 4 mainly investigates the conditions for pth moment asymptotic

and exponential stability respectively. Then Section 5 gives both linear and nonlinear

examples to illustrate our new theory. The final conclusion is stated in Section 6.

Let us begin to develop these new techniques and to establish our new theory.

2 Notation and Stabilization Problem

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with filtration {Ft}t≥0 which is

increasing and right continuous and F0 contains all P-null sets. We write the transpose

of a matrix or vector A as AT . Denote the m-dimensional Brownian motion defined on

the probability space by w(t) = (w1(t), · · · , wm(t))T . For a positive number a, [a] means

the integer part of a. For a vector x, denote by |x| its Euclidean norm. For a matrix Q,

its trace norm |Q| =
√

trace(QTQ) and its operator norm ‖Q‖ = max{|Qx| : |x| = 1}.
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For a real symmetric matrix Q, λmin(Q) and λmax(Q) means its smallerst and largest

eigenvalues respectively. Denote by Lp(Ω;Rn) the family of Rn-valued random variables

x such that E|x|p <∞.

Let r(t) for t ≥ 0 be a right-continuous Markov chain on the probability space taking

values in a finite state space S = {1, 2, · · · , N} with generator matrix Γ = (γij)N×N whose

elements γij are the transition rates from state i to j for i 6= j and γii = −
∑

j 6=i γij. We

assume that Markov chain r(·) is independent of the Brownian motion w(·).

Consider an n-dimensional hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t) (2.1)

on t ≥ 0, with initial values x(0) = x0 ∈ Rn and r(0) = r0 ∈ S. Here

f, u : Rn × S ×R+ → Rn and g : Rn × S ×R+ → Rn×m,

The given system may not be stable and our aim is to design a feedback control u(x(δt), r(t), t)

so that the controlled hybrid SDE

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(t), t)

)
dt+ g(x(t), r(t), t)dw(t) (2.2)

becomes stable, where

δt = [t/τ ]τ (2.3)

for τ > 0.

So our controller u(x(δt), r(t), t) is designed based on the discrete-time state obser-

vations x(0), x(τ), x(2τ), · · · . Now we impose the following standing hypotheses.

Assumption 2.1 Assume that the coefficients f and g are all locally Lipschitz continu-

ous (see e.g. [15]).We also assume that they satisfy the following linear growth conditions

|f(x, i, t)| ≤ K1|x| and |g(x, i, t)| ≤ K2|x| (2.4)
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for all (x, i, t) ∈ Rn × S ×R+, where K1 and K2 are both positive numbers.

Obviously, (2.4) implies that

f(0, i, t) = 0, g(0, i, t) = 0 (2.5)

for all (i, t) ∈ S ×R+.

Assumption 2.2 Assume the controller function u are globally Lipschitz continuous,

i.e., there exists a positive constant K3 such that

|u(x, i, t)− u(y, i, t)| ≤ K3|x− y| (2.6)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+. We also assume that

u(0, i, t) = 0 (2.7)

for all (i, t) ∈ S ×R+.

We can easily see that Assumption 2.2 implies the following linear growth condition

on the controller function

|u(x, i, t)| ≤ K3|x| (2.8)

for all (x, i, t) ∈ Rn × S ×R+.

Noticing that the controlled system (2.2) can be written as an SDDE (see [24]), then

we know that under Assumptions 2.1 and 2.2, there is a unique solution x(t) such that

E|x(t)|p <∞ for all t ≥ 0 and p > 1 (see e.g. [15]).

For stabilization purpose related to the controlled system (2.2), we introduce the

following Lyapunov function operator and Lyapunov functionals.
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Let V (x(t), r(t), t) be a Lyapunov function and we require V ∈ C2,1(Rn×S×R+;R+),

i.e., the family of non-negative functions V (x, i, t) is defined on (x, i, t) ∈ Rn × S × R+

which are continuously twice differentiable in x and once in t. Then define an operator

LV : Rn × S ×R+ → R by

LV (x, i, t) = Vt(x, i, t) + Vx(x, i, t)[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Vxx(x, i, t)g(x, i, t)]

+
N∑
k=1

γikV (x, k, t), (2.9)

where Vt, Vx and Vxx is the first order partial derivative with respect to t, x and the

second order partial derivative with respect to x respectively.

Now we define a Lyapunov functional for a fixed moment order p > 1 by

V̂ (xt, rt, t) = θτ
p−2
2

∫ t

t−τ

∫ t

s

[
τ

p
2 |f(x(z),r(z),z)+u(x(δz),r(z),z)|p+ρ|g(x(z),r(z), z)|p

]
dzds

(2.10)

for t ≥ 0, where xt := {x(t + s) : −2τ<s ≤ 0} 1, rt := {r(t+ s) : −τ ≤ s ≤ 0}, θ is a

positive number to be determined and

ρ =


(32
p

)
p
2 for p ∈ (1, 2),

[p(p−1)
2

]
p
2 for p ≥ 2.

(2.11)

For the functional to be well defined over 0 ≤ t < 2τ , we set initial values

x(s) = x0, r(s) = r0, f(x, i, s) = f(x, i, 0), u(x, i, s) = u(x, i, 0), g(x, i, s) = g(x, i, 0)

for all (x, i, s) ∈ Rn × S × [−2τ, 0).

1For the definition of xt, we require s ∈ [−2τ, 0] instead of s ∈ [−τ, 0]. This is because z− τ < δz ≤ z

in (2.10). At the starting point z = s = t− τ , we have t− 2τ < δz ≤ t− τ .
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In addition, we need to construct another functional by

U(xt, rt, t) = V (x(t), r(t), t) + V̂ (xt, rt, t). (2.12)

Let’s impose an assumption on the Lyapunov function.

Assumption 2.3 Assume that there is a function V ∈ C2,1(Rn × S ×R+;R+) and two

positive numbers l, λ such that

LV (x, i, t) + l|Vx(x, i, t)|
p

p−1 ≤ −λ|x|p (2.13)

for all (x, i, t) ∈ Rn × S ×R+.

3 Asymptotic Stabilization

Theorem 3.1 Let Assumptions 2.1, 2.2 and 2.3 hold. Choose a free parameter α ∈

(0, 8
1−p
p ). If τ > 0 is sufficiently small for

λ >
[2(p− 1)]p−1Kp

3

pplp−1(1− 8p−1αp)
τ

p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
and τ ≤ α

K3

, (3.1)

then the controlled system (2.2) is H∞-stable in Lp(Ω×R+;Rn) (also known as Lp(Ω×

R+;Rn)-stable) in the sense ∫ ∞
0

E|x(s)|pds <∞ (3.2)

for all initial data x0 ∈ Rn and r0 ∈ S.

Proof. Fix any x0 ∈ Rn and r0 ∈ S. Let

Φ(xt, rt, t) = θτ
p−2
2

∫ t

t−τ

[
τ

p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds.

(3.3)
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Notice that the integrand in (2.10) is right-continuous in t, then we can use the Leibniz

integral ruleto calculate the derivative of V̂ (xt, rt, t) with respect to t.

V̂t(xt, rt, t) =θτ
p
2

[
τ

p
2 |f(x(t), r(t), t) + u(x(δt), r(t), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t).

We apply the generalized Itô formula (see e.g. [15]) to U(xt, rt, t) and obtain that

dU(xt, rt, t) = LU(xt, rt, t)dt+ dM(t)

for t ≥ 0, where M(t) is a continuous local martingale with M(0) = 0 (we do not need

its explicit form here) and

LU(xt, rt, t)

=Vt(x(t), r(t), t) + Vx(x(t), r(t), t)[f(x(t), r(t), t) + u(x(δt), r(t), t)]

+ 1
2
trace[gT (x(t), r(t), t)Vxx(x(t), r(t), t)g(x(t), r(t), t)]

+
N∑
j=1

γr(t),jV (x(t), j, t) + V̂t(xt, rt, t). (3.4)

Replace some terms with the operator defined in (2.9), we have

LU(xt, rt, t)

=LV (x(t), r(t), t)− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t)]

+ θτ
p
2

[
τ

p
2 |f(x(t), r(t), t) + u(x(δt), r(t), t)|p + ρ|g(x(t), r(t), t)|p

]
− Φ(xt, rt, t). (3.5)

By the Young inequality (see e.g. [15, page 52]) and Assumption 2.2, we can derive
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that

− Vx(x(t), r(t), t)[u(x(t), r(t), t)− u(x(δt), r(t), t)]

≤|Vx(x(t), r(t), t)||u(x(t), r(t), t)− u(x(δt), r(t), t)|

≤
[
ε|Vx(x(t), r(t), t)|

p
p−1

] p−1
p
[
ε1−p|u(x(t), r(t), t)− u(x(δt), r(t), t)|p

] 1
p

≤p− 1

p
ε|Vx(x(t), r(t), t)|

p
p−1 +

1

p
ε1−p|u(x(t), r(t), t)− u(x(δt), r(t), t)|p

≤l|Vx(x(t), r(t), t)|
p

p−1 +
1

p
(
p− 1

pl
)p−1Kp

3 |x(t)− x(δt)|p, (3.6)

where l = p−1
p
ε for ∀ε > 0. Moreover, by Assumptions 2.1, 2.2 and the elementary

inequality |a+ b|p ≤ 2p−1(|a|p + |b|p) for ∀a, b∈ R, we have

|f(x(t), r(t), t) + u(x(δt), r(t), t)|p

≤2p−1
[
Kp

1 |x(t)|p +Kp
3 |x(δt)|p

]
≤2p−1(Kp

1 + 2p−1Kp
3 )|x(t)|p + 4p−1Kp

3 |x(t)− x(δt)|p.

(3.7)

Substituting (3.6) and (3.7) into (3.5) yields that

LU(xt, rt, t) ≤LV (x(t), r(t), t) + l|Vx(x(t), r(t), t)|
p

p−1

+ θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
|x(t)|p

+
(

4p−1θτ p +
1

p
(
p− 1

pl
)p−1

)
Kp

3 |x(t)− x(δt)|p − Φ(xt, rt, t). (3.8)

Then Assumption 2.3 implies that

LU(xt,rt, t) ≤ −β|x(t)|p +
(

4p−1θτ p +
1

p
(
p− 1

pl
)p−1

)
Kp

3 |x(t)− x(δt)|p − Φ(xt, rt, t).

(3.9)

where

β = β(θ, τ) := λ− θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
. (3.10)
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Furthermore, it’s easy to see from the Itô formula that

|x(t)− x(δt)|p

≤2p−1
(∣∣∣ ∫ t

δt

[f(x(s), r(s), s) + u(x(δs), r(s), s)]ds
∣∣∣p +

∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p).

(3.11)

Since t− δt ≤ τ for all t ≥ 0, Hölder’s inequality indicates that

∣∣∣ ∫ t

δt

[f(x(s), r(s), s)+u(x(δs), r(s), s)]ds
∣∣∣p≤ τ p−1

∫ t

δt

|f(x(s), r(s), s)+u(x(δs), r(s), s)|pds.

(3.12)

For p ∈ (1, 2), we use the Burkholder-Davis-Gundy inequality (see e.g. [14, page 40])

and Hölder’s inequality to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p≤ E

(
sup
δt≤z≤t

∣∣∣ ∫ z

δt

g(x(v), r(v), v)dw(v)
∣∣∣p)

≤(
32

p
)
p
2E
[ ∫ t

δt

|g(x(s), r(s), s)|2ds
] p

2 ≤ (
32

p
)
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (3.13)

For p ≥ 2, we use [14, Theorem 7.1 on page 39] to obtain that

E
∣∣∣ ∫ t

δt

g(x(s), r(s), s)dw(s)
∣∣∣p ≤ [

p(p− 1)

2
]
p
2 τ

p−2
2 E

∫ t

δt

|g(x(s), r(s), s)|pds. (3.14)

Substituting (3.12), (3.13), (3.14) and (2.11) into (3.11) yields

E|x(t)− x(δt)|p

≤2p−1τ
p−2
2 E

∫ t

δt

[
τ

p
2 |f(x(s), r(s), s) + u(x(δs), r(s), s)|p + ρ|g(x(s), r(s), s)|p

]
ds. (3.15)

Let us now choose a parameter α ∈ (0, 8
1−p
p ) and choose

τ ≤ α

K3

and θ =
[2(p− 1)]p−1

pp(1− 8p−1αp)
l1−pKp

3 . (3.16)

Then

2p−1τ
p−2
2 [4p−1θτ p +

1

p
(
p− 1

pl
)p−1]Kp

3 ≤ θτ
p−2
2 (3.17)
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Combining (3.3), (3.9), (3.15) and (3.17) yields

E(LU(xt, rt, t)) ≤ −βE|x(t)|p, (3.18)

and by condition (3.1) we have β > 0.

Moreover, we know from [15, Lemma 1.9 on page 49] that,

EU(xt, rt, t) = U(x0, r0, 0) + E
∫ t

0

LU(xs, rs, s)ds, for t ≥ 0. (3.19)

Denote U(x0, r0, 0) by C0 for simplicity, then

C0 = V (x0, r0, 0) + 0.5θτ
p+2
2

[
τ

p
2 |f(x0, r0, 0) + u(x0, r0, 0)|p + ρ|g(x0, r0, 0)|p

]
. (3.20)

Clearly, C0 is a positive number. Consequently, substituting (3.18) into (3.19) and by

the Fubini theorem, we obtain that

0 ≤ EU(xt, rt, t) ≤ C0 − β
∫ t

0

E|x(s)|pds, (3.21)

for t ≥ 0. Hence ∫ ∞
0

E|x(s)|pds ≤ C0/β,

which implies the desired assertion (3.2). The proof is complete. 2

Clearly, parameters θ and τ are both positive. To obtain a relatively large τ that

satisfies (3.1), we need to choose a good value of α. As α increases, lower bound of λ (i.e.

θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
) also increases. In other words, choosing a larger α

could make Assumption 2.3 stronger. So we need to find a balance between the lower

bound of λ and the upper bound α
K3

. Moreover, we also need to choose a good value of ε.

As the free positive parameter ε is positive correlated to l but negative correlated to λ.

While (3.1) implies that an increasing function of τ has upper bound λlp−1. So we need

to find a balance between (2.13) and (3.1). These can be seen in Section 5 Examples.
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Theorem 3.2 Under the same assumptions of Theorem 3.1, the solution of the controlled

system (2.2) satisfies

lim
t→∞

E|x(t)|p = 0

for any initial data x0 ∈ Rn and r0 ∈ S. In other words, the controlled system (2.2) is

asymptotically stable in pth moment.

Proof. Again, fix any x0 ∈ Rn and r0 ∈ S. We know from the Itô formula that for t ≥ 0,

E(|x(t)|p) = |x0|p + E
∫ t

0

(
p|x(s)|p−2xT (s)[f(x(s), r(s), s) + u(x(δs), r(s), s)]

)
ds

+ E
∫ t

0

(p
2
|x(s)|p−2|g(x(s), r(s), s)|2 +

p(p− 2)

2
|x(s)|p−4|xT (s)g(x(s), r(s), s)|2

)
ds.

(3.22)

Since xTy ≤ |x||y| and |xTg| ≤ |x||g| for ∀x, y ∈ Rn, g ∈ Rn×m, we have

E(|x(t)|p) ≤ |x0|p +

∫ t

0

pE
[
|x(s)|p−1(|f(x(s), r(s), s)|+ |u(x(δs), r(s), s)|)

]
ds

+

∫ t

0

(p
2
E
[
|x(s)|p−2|g(x(s), r(s), s)|2

]
+
p(p− 2)

2
E[|x(s)|p−2|g(x(s), r(s), s)|2]

)
ds

for p ≥ 2, and

E(|x(t)|p) ≤ |x0|p +

∫ t

0

pE
[
|x(s)|p−1(|f(x(s), r(s), s)|+ |u(x(δs), r(s), s)|)

]
ds

+

∫ t

0

(p
2
E
[
|x(s)|p−2|g(x(s), r(s), s)|2

])
ds

for 1 < p < 2. Then Assumptions 2.1 and 2.2 indicate

E(|x(t)|p) ≤ |x0|p +

∫ t

0

(
pK1E|x(s)|p + pK3E

[
|x(s)|p−1|x(δs)|

]
+ πK2

2E|x(s)|p
)
ds,

(3.23)

where

π =


p
2

for p ∈ (1, 2),

p(p−1)
2

for p ≥ 2.
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Moreover, the Young inequality and the elementary inequality imply that

|x(s)|p−1|x(δs)| ≤
[p− 1

p
||x(s)|+ 1

p
|x(δs)|

]p
≤ 2p−1

pp

[
(p− 1)p|x(s)|p + |x(δs)|p

]
≤ 2p−1

pp

[
((p− 1)p + 2p−1)|x(s)|p + 2p−1|x(s)− x(δs)|p

]
.

(3.24)

Substituting this into (3.23) gives

E(|x(t)|p) ≤ |x0|p + C

∫ t

0

E|x(s)|pds+ C

∫ t

0

E|x(s)− x(δs)|pds, (3.25)

where, here and in the remaining part of this paper, C’s denote positive constants that

may change from line to line but we don’t need their explicit forms.

Note that for any s ≥ 0, there is a unique integer v ≥ 0 for s ∈ [vτ, (v + 1)τ), and

δz = vτ for any z ∈ [vτ, s].

Recall (3.15) as well as the Assumptions 2.1 and 2.2, we derive that

E|x(s)− x(δs)|p = E|x(s)− x(vτ)|p

≤2p−1τ
p−2
2 E

∫ s

vτ

τ
p
2 |f(x(z), r(z), z) + u(x(δz), r(z), z)|p + ρ|g(x(z), r(z), z)|pdz

≤2p−1τ
p−2
2 E

∫ s

vτ

2p−1τ
p
2

[
Kp

1 |x(z)|p +Kp
3 |x(vτ)|p

]
+ ρKp

2 |x(z)|pdz

≤2p−1τ
p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

] ∫ s

vτ

E|x(z)|pdz + 4p−1τ pKp
3E|x(vτ)|p

≤2p−1τ
p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

] ∫ s

vτ

E|x(z)|pdz + 8p−1τ pKp
3

(
E|x(s)|p + E|x(s)− x(vτ)|p

)
.

Note that the condition (3.1) implies 8p−1τ pKp
3 < 1, then we can rearrange it and obtain
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that

E|x(s)− x(δs)|p ≤
2p−1τ

p−2
2

[
2p−1τ

p
2Kp

1 + ρKp
2

]
1− 8p−1τ pKp

3

∫ s

δs

E|x(z)|pdz +
8p−1τ pKp

3

1− 8p−1τ pKp
3

E|x(s)|p.

(3.26)

Substituting this into (3.25) yields

E|x(t)|p ≤ |x0|p + C

∫ t

0

E|x(s)|pds+ C

∫ t

0

∫ s

δs

E|x(z)|pdzds. (3.27)

Besides, it’s easy to show that for a non-negative function F (t),∫ t

0

∫ s

δs

F (z)dzds ≤
∫ t

0

∫ s

s−τ
F (z)dzds

≤
∫ t

−τ
F (z)

∫ z+τ

z

dsdz ≤ τ

∫ t

−τ
F (z)dz.

Applying this to E|x(z)|p gives∫ t

0

∫ s

δs

E|x(z)|pdzds ≤ τ

∫ t

−τ
E|x(z)|pdz ≤ τ 2|x0|p + τ

∫ t

0

E|x(z)|pdz,

then we can rewrite (3.27) as

E|x(t)|p ≤ C|x0|p + C

∫ t

0

E|x(s)|pds. (3.28)

So by Theorem 3.1, we have

E|x(t)|p ≤ C ∀t ≥ 0. (3.29)

Furthermore, it’s easy to see from the Itô formula that

E|x(t2)|p − E|x(t1)|p

=E
∫ t2

t1

(
p|x(t)|p−2xT (t)[f(x(t), r(t), t) + u(x(δt), r(t), t)]

)
dt

+ E
∫ t2

t1

(p
2
|x(t)|p−2|g(x(t), r(t), t)|2 +

p(p− 2)

2
|x(t)|p−4|xT (t)g(x(t), r(t), t)|2

)
dt.

After similar calculations to (3.22) and(3.23), we derive that

E|x(t2)|p − E|x(t1)|p ≤
∫ t2

t1

(
pK1E|x(t)|p + pK3E

[
|x(t)|p−1|x(δt)|

]
+ πK2

2E|x(t)|p
)
dt.
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Then by (3.29), we get that for any 0 ≤ t1 < t2 <∞,

∣∣∣E|x(t2)|p − E|x(t1)|p
∣∣∣ ≤ C(t2 − t1).

According to Barbalat’s lemma (see e.g. [34, page 123]), combining this uniform conti-

nuity with Theorem 3.1 yields that limt→∞ E|x(t)|p = 0. The proof is complete. 2

4 Exponential Stabilization

In last section, we discussed the asymptotic stability and proved that eventually (as

t → ∞), E|x(t)|p goes to 0, but we don’t know its speed. To explore the rate at which

the solution tends to zero, let us discuss the exponential stabilization in this section. We

need to impose the following condition at first.

Assumption 4.1 Assume that there is a pair of positive numbers c1 and c2 such that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p (4.1)

for all (x, i, t) ∈ Rn × S ×R+.

Theorem 4.2 Let Assumptions 2.1, 2.2, 2.3 and 4.1 hold. Choose a parameter α ∈

(0, 8
1−p
p ), let τ > 0 be sufficiently small for (3.1) to hold, set parameters θ as (3.16) and

β as (3.10), so β > 0. Then the solution of the controlled system (2.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ −γ (4.2)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −γ

2
a.s. (4.3)
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for all initial data x0 ∈ Rn and r0 ∈ S, where γ > 0 is the unique root to the following

equation

2τγe2τγ(H1 + τH2) + γc2 = β, (4.4)

in which

H1 = θτ
p
2

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3 +
32p−1τ

3p
2 K2p

3

1− 8p−1τ pKp
3

]
and H2 =

8p−1θτ
3p−2

2 Kp
3

[
2p−1τ

p
2Kp

1 + ρKp
2

]
1− 8p−1τ pKp

3

. (4.5)

Proof. It’s easy to see from the generalized Itô formula that

E
[
eγtU(xt, rt, t)

]
= U(x0, r0, 0) + E

∫ t

0

eγs[γU(xs, rs, s) + LU(xs, rs, s)]ds (4.6)

for t ≥ 0. By (4.1) and (2.12), we have

c1e
γtE|x(t)|p ≤ eγtEV (x(t), r(t), t) ≤ eγtEU(xt, rt, t)

Then combining (4.6), (3.18) and (3.20) gives

c1e
γtE|x(t)|p ≤ C0 +

∫ t

0

eγs[γEU(xs, rs, s)− βE|x(s)|p]ds. (4.7)

Moreover, substutiting (2.10) and (4.1) into (2.12) gives

EU(xs, rs, s) ≤ c2E|x(s)|p + EV̂ (xs, rs, s). (4.8)

Since for a function F (v), we have

∫ s

s−τ

∫ s

z

F (v)dvdz =

∫ s

s−τ

∫ v

s−τ
F (v)dzdv =

∫ s

s−τ
F (v)

∫ v

s−τ
dzdv

=

∫ s

s−τ
F (v)(v − s+ τ)dv < τ

∫ s

s−τ
F (v)dv.
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Applying this to EV̂ (xs, rs, s) yields that

EV̂ (xs, rs, s)

≤θτ
p
2E
∫ s

s−τ

[
τ

p
2 |f(x(v), r(v), v) + u(x(δv), r(v), v)|p + ρ|g(x(v), r(v), v)|p

]
dv

≤θτ
p
2

∫ s

s−τ

[
2p−1τ

p
2Kp

1 + ρKp
2 + 4p−1τ

p
2Kp

3

]
E|x(v)|p + 4p−1τ

p
2Kp

3E|x(v)− x(δv)|pdv.

To make δv > 0, we need v ≥ τ and so s ≥ 2τ . Then by (3.26), we have

EV̂ (xs, rs, s) ≤ H1

∫ s

s−τ
E|x(v)|pdv +H2

∫ s

s−τ

∫ v

δv

E|x(y)|pdydv. (4.9)

where both H1 and H2 have been defined by (4.5).

Since for a non-negative function F (y),

∫ s

s−τ

∫ v

δv

F (y)dydv ≤
∫ s

s−τ

∫ v

v−τ
F (y)dydv

<

∫ s

s−2τ

∫ s

s−τ
F (y)dvdy = τ

∫ s

s−2τ
F (y)dy.

Thus,
∫ s
s−τ

∫ v
δv
E|x(y)|pdydv ≤ τ

∫ s
s−2τ E|x(y)|pdy. Hence we have

E(V̂ (xs, rs, s)) ≤ (H1 + τH2)

∫ s

s−2τ
E|x(y)|pdy. (4.10)

Combining (4.7), (4.8) and (4.10), we obtain that

c1e
γtE|x(t)|p

≤C0 − (β − γc2)
∫ t

0

eγsE|x(s)|pds+ γ(H1 + τH2)

∫ t

0

eγs
(∫ s

s−2τ
E|x(y)|pdy

)
ds (4.11)

for ∀t ≥ 2τ . Obviously,

∫ 2τ

0

eγs
∫ s

s−2τ
E|x(y)|pdyds ≤

∫ 2τ

−2τ

∫ 2τ

0

eγsE|x(y)|pdsdy =
e2τγ−1

γ

∫ 2τ

−2τ
E|x(y)|pdy.

(4.12)
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Besides, it can be easily seen that

∫ t

2τ

eγs
(∫ s

s−2τ
E|x(y)|pdy

)
ds ≤

∫ t

0

E|x(y)|p
(∫ y+2τ

y

eγsds
)
dy

≤ 2τe2τγ
∫ t

0

eγyE|x(y)|pdy. (4.13)

Substituting (4.12) and (4.13) into (4.11) gives

c1e
γtE|x(t)|p ≤ C +

(
2τγe2τγ(H1 + τH2) + γc2 − β

)∫ t

0

eγsE|x(s)|pds. (4.14)

The condition (4.4) implies that for ∀t ≥ 2τ ,

c1e
γtE|x(t)|p ≤ C. (4.15)

Hence we obtain the assertion (4.2). Finally by [15, Theorem 8.8 on page 309], we obtain

the assertion (4.3) as well. The proof is complete. 2

In practice, a common choice of Lyapunov functions is quadratic functions, for exam-

ple, V (x(t), r(t), t) = (xT (t)Qr(t)x(t))
p
2 where Qr(t) are positive-definite n×n matrices. So

we propose the following corollaries to state how to use this kind of Lyapunov functions

to help exponentially stabilize an unstable hybrid system.

Since Vx(x, i, t) = p(xTQix)
p
2
−1xTQi, then we have |Vx(x, i, t)| ≤ pλ

p
2
−1

max (Qi)‖Qi‖|x|p−1.

So we only need to require LU(x, i, t) ≤ −b|x|p for b > 0 to satisfy Assumption 2.3.

This leads us to the following alternative assumption. By calculating the derivatives

Vt(x, i, t) = 0 and Vxx(x, i, t) = p(p − 2)[xTQix]
p
2
−2Qixx

TQi + p[xTQix]
p
2
−1Qi, we can

easily obtain LU(x, i, t), which is the left-hand-side of (4.16) below.

Assumption 4.3 Assume that there exist positive-definite symmetric matrices Qi ∈

Rn×n (i ∈ S) and a constant b > 0 such that
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p(xTQix)
p
2
−1
(
xTQi[f(x, i, t) + u(x, i, t)] +

1

2
trace[gT (x, i, t)Qig(x, i, t)]

)
+ p(

p

2
− 1)[xTQix]

p
2
−2|gTQix|2 +

N∑
j=1

γij[x
TQjx]

p
2 ≤ −b|x|p, (4.16)

for all (x, i, t) ∈ Rn × S ×R+.

Corollary 4.4 Let Assumptions 2.1, 2.2 and 4.3 hold. Set the parameters in (4.1) as

c1 = min
i∈S

λ
p
2
min(Qi), c2 = max

i∈S
λ

p
2
max(Qi) and d =

[
pmax

i∈S
λ

p−2
2

max(Qi) max
i∈S
‖Qi‖

] p
p−1 .

Choose l < b/d and α ∈ (0, 8
1−p
p ). Set parameters λ = b− ld, θ as (3.16) and β as (3.10).

Let τ > 0 be sufficiently small for (3.1) to hold. Then (4.2) holds, i.e., the controlled

system is pth moment exponentially stable.

5 Examples

Now we illustrate our theory with two examples.

Example 5.1 Now we consider a nonlinear hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t) (5.1)

on t ≥ 0. Here

x(t) =

 x1(t)

x2(t)

 ;

w(t) is a scalar Brownian motion; r(t) is a Markov chain on the state space S = {1, 2}

with the generator matrix

Γ =

 −4 4

1 −1

 ;
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and the coefficients are

f(x(t), 1, t) =

 x2(t) cos(x1(t))

x1(t) sin(x2(t))

 , f(x(t), 2, t) =

 x2(t) sin(x1(t))

x1(t) cos(x2(t))

 ,

g(x(t), 1, t) =

 0.2
√

3x21(t) + x22(t)

0.2
√
x21(t) + 3x22(t)

 , g(x(t), 2, t) =

 0.1 −0.1

−0.2 0.4

x(t).

Figure 5.1 below shows simulated paths and obviously this system is not stable in

the sense of 3rd moment exponential stability.

Figure 5.1: One simulated path of Markov chain r(t) and state x(t), as well as sample mean of

|x(t)|3 from 2000 simulated paths, all by the Euler–Maruyama method with step size 1e-6 and

random initial values.

Note that this system satisfies the Assumption 2.1 with K1 = 1 and K2 = 0.4671.

We will design a feedback control of the form u(x, i, t) = Ai(x)x and find the observation

interval τ to make the controlled system

dx(t) =
(
f(x(t), r(t), t) + u(x(δt), r(t), t)

)
dt+ g(x(t), r(t), t)dw(t), (5.2)

become 3rd moment exponentially stable. In the controller, Ai(x) : R2 → R2×2 and

Assumption 2.2 will hold with K3 = maxi∈S,x∈R2 ‖Ai(x)‖.

Now we can start designing Ai(x) by choosing our auxiliary Lyapunov functions. We

choose Lyapunov functions of the form V (x, i, t) = (xTQix)1.5 where Qi = qiI ( I is the

2κ2 identity matrix), so Corollary 4.4 can be applied.

Let V (x, i, t) = q1.5i |x|3 where q1 = 2, q2 = 1. Then the left-hand-side of (4.16)

21



becomes

3q0.5i |x|[qixT (f(x, i, t) + u(x, i, t)) + 0.5qi|g(x, i, t)|2] + 1.5qi|x|−1|gTx|2 +
N∑
j=1

γijq
1.5
j |x|3

≤1.5q1.5i |x|[(2K1 +K2
2)|x|2 + 2xTAi(x)x] + 1.5qiK

2
2 |x|1.5 +

N∑
j=1

γijq
1.5
j |x|3

≤|x|xT Q̃ix ≤ λmax(Q̃i)|x|3 (5.3)

for all i ∈ S , where

Q̃i = 1.5q1.5i (2K1 +K2
2)I + 1.5q1.5i (Ai(x) + ATi (x)) + 1.5qiK

2
2I +

N∑
j=1

γijq
1.5
j I.

Substituting the constant coefficients gives

Q̃1 = 2.7517I + 4.2426(A1(x) + AT1 (x))

and Q̃2 = 5.4829I + 1.5(A2(x) + AT2 (x)).

Thus, we need to design Ai(x) such that Q̃i is negative-definite for i ∈ S. Of course there

are many choices of Ai(x), here we use

A1(x(t)) =

 0.5 sin(x1(t))− 1 −1

1 0.5 cos(x2(t))− 1



and A2(x(t)) =

 −2.3 0.2 cos(x1(t)x2(t))

−0.2 cos(x1(t)x2(t)) −2.3

 .
Substituting the coefficient matrices gives λmax(Q̃1) = −1.491 and λmax(Q̃2) = −1.417.

That is, Assumption 4.3 holds with b = 1.417. Assumption 2.2 holds with K3 = 2.309.

Then we calculate parameters in Corollary 4.4 and get c1 = 1, c2 = 2.828 and d = 24.717.

To obtain a relatively large observation interval τ , we choose α = 0.008 and l = 0.038.

This gives λ = 0.4777 and condition (3.1) requires τ ≤ 0.003.
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Corollary 4.4 indicates that the controlled system (5.2) with feedback control defined

as above and τ ≤ 0.003 is 3rd moment exponentially stable, which is indeed in accor-

dance with the Figure 5.2.

Figure 5.2: One simulated path of Markov chain r(t) and the corresponding state x(t), as well

as sample mean of |x(t)|3 from 2000 simulated paths, all by the Euler–Maruyama method

with step size 1e-6, observation interval τ = 0.003 and random initial values.

Example 5.2 Let us consider the same linear hybrid system as the Example 6.1 in [24].

[24] achieved the almost sure exponential stability by stabilizing the unstable system in

mean square (p = 2) sense. We can achieve the almost sure exponential stability by

weaker conditions: a smaller moment order p. Using the same way of control as in [24],

i.e., using the same Fis and Gis for feedback control u(x, i, t) = FiGix, we can apply a

bigger observe interval for the controlled system to be almost surely exponentially stable.

Let p = 1.5. Now we calculate the observe interval τ .

Recall that the original system is

dx(t) = Ar(t)x(t)dt+Br(t)x(t)dw(t) (5.4)

on t ≥ t0 with coefficients

A1 =

 1 −1

1 −5

 , B1 =

 1 1

1 −1

 ,

A2 =

 −5 −1

1 1

 , B2 =

 −1 −1

−1 1

 .

23



Here w(t) is a scalar Brownian motion and r(t) is a Markov chain on the state space

S = {1, 2} generated by

Γ =

 −1 1

1 −1

 .
Figure 5.3 shows simulated paths and obviously this system is not stable in the sense

of 1.5th moment exponential stability.

Figure 5.3: One simulated path of Markov chain r(t) and the corresponding state x(t), as well

as sample mean of |x(t)|1.5 from 2000 simulated paths, all by the Euler–Maruyama method

with step size 1e-6 and random initial values.

Recall that the controller coefficients are

F1 =

 −10

0

 , G1 = (1, 0), F2 =

 0

−10

 , G2 = (0, 1),

and the controlled system

dx(t) = [A(r(t))x(t) + F (r(t))G(r(t))x(δt)]dt+Br(t)x(t)dw(t); (5.5)

satisfies the Assumption 2.1 and 2.3 withK1 = maxi∈S ‖Ai‖ = 5.236, K2 = maxi∈S ‖Bi‖ =

√
2 and K3 = 10.

Choosing the same Lyapunov functions as in [24]: Q1 = Q2 = I (the 2 × 2 identity
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matrix), the left-hand-side of (??) for p = 1.5 becomes

LU(x, i, t)

=1.5|x|−0.5[xT (f(x, i, t) + u(x, i, t)) + 0.5|g(x, i, t)|2]− 0.375|x|−2.5|gTx|2 +
N∑
j=1

γij|x|1.5

≤0.75|x|−0.5
(
2xT [Ai + FiGi]x+ |Bix|2

)
− 0.375λ2min(Bi)|x|1.5 +

N∑
j=1

γij|x|1.5

≤|x|−0.5xT Q̃ix

≤λmax(Q̃i)|x|1.5 (5.6)

for all i ∈ S, where

Q̃i = 0.75
[
(Ai + FiGi) + (ATi + F T

i G
T
i ) +BT

i Bi

]
− 0.375λ2min(Bi)I +

N∑
j=1

γijI. (5.7)

Substituting the coefficient matrices gives

Q̃1 =

 −12.75 0

0 −6.75

 , Q̃2 =

 −6.75 0

0 −12.75

 .
So the Assumption 4.3 holds with b = 6.75.

Then we calculate parameters in Corollary 4.4 and get c1 = c2 = 1, d = 3.375. To

maximize observation interval τ , we choose α = 0.15 and l = 0.66. This gives λ = 4.5225,

and finally the condition (3.1) requires τ ≤ 0.01456.

By Corollary 4.4, the controlled system (5.5) with controllers u1, u2 defined as above and

τ ≤ 0.01456 is exponentially stable in 1.5th moment and almost surely as well. Figure

5.4 shows the computer simulation supports our results clearly.

When we choose the same controller coefficients and Lyapunov functions but different

moment order p, the almost sure exponential stability of the controlled system requires
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Figure 5.4: One simulated path of Markov chain r(t) and the corresponding state x(t), as well

as sample mean of |x(t)|1.5 from 2000 simulated paths, all by the Euler–Maruyama method

with step size 1e-6, observation interval τ = 0.0145 and random initial values.

different upper bounds on observation interval τ . This is shown in Table 1 below. If we

only need the almost surely exponential stability (no requirement on moment stability),

then we can choose p = 1.01. This could reduce the state observation frequency to around

one thrid of what was required in [24] for the mean square case. Hence we reduce the

cost of control.

Table 1: Moment order p vs. Observation interval upper bound τ ∗.

6 Conclusion

In this paper we have discussed the stabilization of continuous-time hybrid stochastic

differential equations by feedback controls based on discrete-time state observations. The

stabilities analysed include pth moment H∞ stability and asymptotic stability, pth mo-

ment and almost sure exponential stabilities. The main contributions of this paper are

expanding from the sense of mean square to pth moment for all p > 1, and improving

the upper bound of observation interval τ to some extent.
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