Kruasuwan, Worarat and Hoskisson, Paul A. and Thamchaipenet, Arinthip (2017) Draft genome sequence of root-associated sugarcane growth promoting Microbispora sp. GKU 823. Genome Announcements. ISSN 2169-8287 (In Press),

This version is available at https://strathprints.strath.ac.uk/61092/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Draft genome sequence of root-associated sugarcane growth promoting

Microbispora sp. GKU 823

Worarat Kruasuwan, a,b Paul A. Hoskisson, b Arinthip Thamchaipenet a,c*

a Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand

b Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom

c Center for Advanced Studies in Tropical Natural Resources, NRU–KU, Kasetsart University, Chatuchak, Bangkok, Thailand

*Correspondence authors:

Dr. Arinthip Thamchaipenet

Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand.

E-mail: arinthip.t@ku.ac.th
Abstract

The endophytic plant growth promoting *Microbispora* sp. GKU 823 was isolated from the roots of sugarcane cultivated in Thailand. It has an estimated 9.4 Mbp genome and a G+C content of 71.3%. The genome sequence reveals several genes associated with plant growth-promoting traits and extensive secondary metabolite biosyntheses.

Endophytic actinomycetes are free-living filamentous bacteria that mutually colonize inside plants and facilitate plant growth through direct and indirect mechanisms employing plant growth-promoting (PGP) traits (1). Endophytic *Microbispora* sp. GKU 823 was isolated from roots of sugarcane cultivated in Thailand and has been shown to enhance sugarcane growth (2). This strain exhibits PGP traits including production of indole-3-acetic acid (IAA) and siderophores, solubilization of phosphate, and suppression of *Aspergillus niger* ATCC 6275 (2). Based on 16S rRNA gene sequence analysis, *Microbispora* sp. GKU 823 closely related to *Microbispora hainanensis* 211020T (99.09% similarity, GenBank accession no. KR560040). The whole genome sequence of *Microbispora* sp. GKU 823 was obtained in which displays genes associated with plant growth promotion and secondary metabolite biosynthesis.

Total genomic DNA of *Microbispora* sp. GKU 823 was extracted using ISOLATE II genomic DNA extraction kit (BIOLINE, UK) according to manufacturer’s instruction. The genome was sequenced using the platform Ion PGM system generating 1,230,781 reads (with approximately 30x coverage) with an average read length of 225 bp. The genome was assembled using SPAdes version 3.9 (3) and evaluated by QUAST version 3.2 (4), the reads were assembled into 262 contigs (coverage ≥10 and length ≥1000 bp) with an N50 of 69,483. The largest contig obtained is 321,219 bp in length. The draft genome is estimated to be 9,430,099 bp with a G+C content of 71.3%.
Functional gene annotation of the assembled genome was carried out by the Rapid Annotations using Subsystems Technology (RAST) server (5). rRNA and tRNA genes were determined by RNAmmer (6) and tRNAscan-SE (7), respectively. The annotation predicted a total of 9,248 coding sequences, 58 tRNA and 3 rRNA genes. The average nucleotide identity values of the genome were calculated using BlastN (ANIb) in JSpeciesWS (8). The genome comparison revealed that Microbispora sp. GKU 823 had an ANIb value of 92.47% similar to Microbispora rosea NRRLB-2630, 90.70% to M. rosea NRRL B-2631 and 81.20% to Microbispora sp. ATCC PTA-5024.

Genes related to PGP traits including phosphate solubilization (alkaline phosphatase, and isocitrate dehydrogenase; 9, 10); IAA production (tryptophan 2-monooxygenase; 11) and genes involved in fungal cell wall degradation (family 18 chitinase; 12) were detected in the genome of Microbispora sp. GKU 823. Moreover, genes involved in stress tolerance (betaine aldehyde dehydrogenase, proline dehydrogenase, superoxide dismutase and trehalose synthase; 13) were also present. These genes sustain the capability of Microbispora sp. GKU 823 to promote growth of sugarcane (2). AntiSMASH version 3.0 (14) predicted 23 secondary metabolite gene clusters in the genome of Microbispora sp. GKU 823 including seven gene clusters of nonribosomal peptide synthetase (NRPS), four gene clusters of Type I polyketide synthase (T1PKS) and terpene, three gene clusters of bacteriocin, two gene clusters of siderophore (including desferrioxamine E), and a single gene cluster encoding a lanthipeptide. These secondary metabolite gene clusters indicate that endophytic Microbispora species are potential sources of novel specialized metabolites.

Nucleotide sequence accession numbers

The draft genome sequence of Microbispora sp. GKU 823 has been deposited in the DDBJ/ENA/GenBank databases under the accession number MWJN00000000.
Acknowledgements

WK was awarded a PhD scholarship by the Royal Golden Jubilee of the Thailand Research Fund (RGJ-TRF). This work was supported by the Thailand Research Fund under grant No. BRG5880004, the Mitr Phol Sugarcane Research Center, Thailand Toray Science Foundation, and PhD Placement grant for scholars 2015/16 granted by Newton fund, British Council. The authors thank Talal S. Salih for assisting in Ion PGM sequencing, Dr. Jana K. Schniete for helping in data analysis and Tiago F.M. Santos for helping in genome submission.

References

