
This version is available at https://strathprints.strath.ac.uk/61039/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
BACKGROUND

Problems with producing clear, intelligible speech can occur in cleft lip and palate (CLP), even after successful surgery to repair the palate.

Current methods of assessment:
- Perception-based phonetic transcription: unreliable in CLP due to range and type of errors
- Electropalatography (EPG): recommended by Royal College of Speech and Language Therapists
 - can reveal covert contrasts and errors
 - requires custom-made artificial palate
 - images only tongue-palate contact from the alveolar region to the boundary of the hard and soft palate
- Advantages of Ultrasound Tongue Imaging (UTI) over EPG:
 - cheaper
 - images from near the tongue tip to the root
 - pharyngeal articulations, common in CLP, are visible
 - does not require individualised equipment
 - can continue to be used as child grows or following surgery

Therapy

Ultrasound can be used as a visual biofeedback tool (U-VBF), to provide children with real-time feedback on their articulations. This can lead to quick remediation of deeply engrained articulatory patterns demonstrated by a growing evidence base (~30 small studies, e.g. 2-3, 4). However, only one small study has focussed on the CLP population, with just two children with sub-mucous cleft.

ERROR TYPES REVEALED BY ULTRASOUND: Examples form Children with Speech Sound Disorders.

<table>
<thead>
<tr>
<th>PARTICIPANTS</th>
<th>DESIGN</th>
<th>ANALYSES</th>
</tr>
</thead>
</table>
| Study 1 Assessment | ~48 children
Aged 3-15
Non-syndromic or syndromic CLP | • Head set stabilises probe under chin
• Micro high-speed cineloop system at 100fps over a 150 degree field of view
• Data collected:
 - spontaneous counting
 - all consonants in /aCa/
 - minimal sets contrasting common substitutions
 - Sentences from the CleftNet Protocol | • Perceptual analysis - phonetic transcriptions
• Visual analysis of ultrasound – documented live
• Quantitative analysis of ultrasound using Articulate Assistant Advanced software
 - a range of measures:
 - Dorsum Excursion Index
 - LOC\textsubscript{ac}
 - Modified Curvature Index
 - Nearest Neighbour Distances |
| Study 2 Intervention | ~8 children from study 1
with lingual speech errors | • Single subject multiple baseline across participants
• 10x 45 minute weekly therapy sessions
• Target specific untreated probes: 3 baseline, mid-therapy, post-therapy, 3 month post-therapy | • Probes, wordlists and DEAP transcribed by SLT blind to the intervention time point and scored for % segment on target
• Celeration lines and 2SD band methods to determine progress statistically within speakers |

References