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Abstract 

Recent progress in the field of genetic engineering has opened up the door to novel synthetic 

biology applications. Microfluidic technology has been emphasized as a key technology to 

support the development of these applications. While several important synthetic biology 

protocols have been developed in microfluidic format, no study has yet demonstrated on-chip 

error control. In synthetic biology protocols, the purification phase is a critical error control 

process which enhances the reliability of the genome segment assembly by removing 

undesired oligos. In this context, we report the design and characterization of a fully 

integrated platform, demonstrating the purification of up to 4 genome segments in parallel, 

prior to their off-chip assembly. The key innovation of this platform is the decoupling control 

strategy which eliminates the need to integrate expensive components onto the microfluidic 

device, enabling lower cost, disposability and rapid operation. Unlike most microfluidic chips 

where fluid connector plugs are needed to connect external pumps, this approach is plug-less 

and the chips are simply connected to the control breadboard by clamping. Furthermore the 

passive chip is isolated from the active control layer thereby eliminating the risk of sample-

to-sample contamination in the reusable parts.  As a validation of this fully-integrated system, 

the parallel on-chip purification of genome segments was demonstrated with purity up to 

20% superior to the bench controls, proving thereby the suitability of the platform for 

synthetic biology applications.  
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I. Introduction 

Synthetic Biology encompasses techniques and methods used to re-engineer biological units 

such as cells or organisms (Carr and Church 2009). To achieve this, synthetic biology 

engineers have created standardized biological units: bioparts or biobricks which assembly 

can be changed on demand using a standard, predictable, and therefore more reliable 

protocol. By being able to tune living systems, or create new synthetic biological systems, the 

production of materials such as medicines or biofuels from biological living organisms could 

be transformed or dramatically improved. In that respect synthetic genome segment assembly 

is currently used for the optimisation of various enzymatic pathways (Boehm et al. 2013; 

Smolke and Silver 2011). As an example, the variation of major transcriptional regulators to 

perturb metabolisms is deemed to increase the yield of bacteria producing biofuels (Colin et 

al. 2011).   

The design of genetic systems involves the synthesis and assembly of genome segments. 

While the oligo synthesis is performed by organic chemical reactions, a greater variety of 

protocols exist for joining or assembling larger DNA segments (Carr and Church 2009). 

Among others, ligation allows pooling assembly organisation and is the fastest method 

compared to serial, parallel or hierarchical assembly (Carr and Church 2009). At the heart of 

the ligation process is the use of short specific overhangs (commonly referred to as “sticky 

ends”, usually 2 to 4 nucleotides) and a DNA ligase enzyme to assemble DNA segments. 

After or during assembly, some kind of error control needs to be put into place to remove 

unwanted or surplus oligos from the reaction mix and improve the reliability of the gene 

synthesis. This purification phase itself has also been reported to considerably enhance the 

reliability of the DNA assembly (Tian et al. 2004) and is the targeted application of the 

disposable chip presented in this article.  

Efficient assembly and purification of large DNA segments towards genome replacement or 
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alteration needs automation and scale-up. Current mainstream technologies for automation 

involve conventional liquid handling robots which tend to be expensive. However, a series of 

new technologies, namely DNA microchips and microfluidic technologies have emerged in 

the last decade as a smart alternative to existing conventional  technology (Fu et al. 2002; Wu 

et al. 2009a). These platforms allow bioengineers (1) to go beyond the current throughput 

threshold in genome sequence assembly, (2) to provide reproducible and reliable processes, 

and (3) to reduce costs of failure and repeats due to human errors. To address these 

challenges, microfluidic platforms offer rapid and practical automation fully compatible with 

existing laboratory infrastructures such as liquid handling robots and microplate standards. 

Hence, microfluidic tools are highly desirable for automating biological and chemical 

protocols in order to avoid human errors, cross-contamination and lengthy procedures (Gulati 

et al. 2009; Szita et al. 2010; Vinuselvi et al. 2011). In comparison to automated liquid 

handling robots, microfluidic systems also offer great advantages in parallelisation, 

throughput, miniaturisation and cost.  

Several microfluidic platforms for biological protocol automation have been developed over 

the last decade (Balagadde et al. 2005; Gomez-Sjoeberg et al. 2007; Hong and Quake 2003; 

Lee et al. 2010; Wu et al. 2009b). Microfluidic large scale integration (µLSI) was developed 

using pneumatically controlled micromechanical valves and pumps, enabling highly complex 

biological automation in parallel (Hong and Quake 2003). The microfluidic valves are 

manufactured using multilayer soft-lithography with superimposed polydimethysiloxane 

(PDMS) layers for manipulating liquids and gases (Squires and Quake 2005; Xia and 

Whitesides 1998). The gas in the control channel applies a pneumatic pressure which bends 

the elastomer membrane over the flow channel in order to precisely control the flow of 

liquids. Similarly, microfluidic latches were developed using pneumatic vacuum (Grover et 

al. 2008; Zhang et al. 2009). Furthermore, a number of these microfluidic platforms have 
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been demonstrated for synthetic biology applications.  Zhou and colleagues demonstrated the 

synthesis and assembly of multiple DNA sequences in a microfluidic picoarray (Zhou et al. 

2004). Kong et al demonstrated a parallel gene synthesis in 500 nL chambers which 

dramatically reduced by two orders of magnitude the volumes of reagents used (Kong et al. 

2007). Multiplex gene synthesis have also been achieved using adapted protocols partly 

performed on DNA microchips (Tian et al. 2004), (Richmond et al. 2004). A platform using 

electrowetting as the actuation method has demonstrated parallel DNA ligation in a 2.1µL 

reaction chamber (Lin et al.). Another PDMS/glass chip assembly has recently demonstrated 

successful DNA ligation with optimised protocol timing (5 min) compared to its benchtop 

counterpart (4h) (Ko et al.). However, these devices did not incorporate DNA error correction 

protocol. 

Despite interesting characteristics, the use of PDMS presents several disadvantages: (i) high 

permeability of the material means that some specific design must be implemented to 

counteract the fast evaporation of small volumes of liquid (Kong et al. 2007), (ii) its 

compliance induces large variations in device performance (ie flow rate variability)  and 

consequently PDMS is rarely a material of choice in industry unless for use of specific 

properties such as in Quakes’ valves (Becker). Although practical in terms of rapid-

prototyping and its low cost, the use of PDMS in research laboratories has been largely 

questioned in recent years, and several alternatives providing higher Young’s modulus have 

been proposed (Sollier et al. 2011).  

Packaging is also a serious commercialisation issue for microfluidic systems (Webb et al. 

2009), and for all of the techniques described above, common features such as direct plugs on 

chip for fluid introduction
 
or pneumatic control bonded on chip

 
are required. For some 

systems, up to hundreds of tubing connections have to be plugged onto a microfluidic chip 

every time a new chip is used, making this loading or unloading step time-consuming and 
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prone to human errors. In addition, fluidic connectors plugged directly on the chip hinder the 

direct loading or recovery of products by manual or robotic liquid systems. There is a real 

need for microfluidic platforms offering greater compatibility with high throughput robotic 

liquid systems for full automation.  

To address these challenges, an alternative approach, named ‘Clamp n’Play’ is proposed. The 

Clamp n’Play approach is a plug-less clamped-based microfluidic chip, for full-scale 

biological protocol automation, using an integrated platform system with a user-friendly 

interface. Modular platforms based on pneumatic fluid actuation have been demonstrated in 

the past but they often integrate passive and active layers in one monolithic block. Some 

decoupled concepts have been proposed. For example, a modular platform and chips made of 

PDMS and silicon allowed the separation of actuators (active chip) from reactor (passive 

chips) (Shaikh et al. 2005). However, the fluid circulates in the passive as well as the active 

re-usable chip, therefore contamination may occur in the non-disposable parts of the system. 

Clamping systems have been in use in several microfluidic groups (Skafte-Pedersen et al. 

2013), although no fully integrated platform with electro-mechanical actuators has been 

reported and validated with a synthetic biology application. The unique features of our 

approach are the combination of the following: (i) the separation or decoupling of the 

microfluidic device from its flow control components and microactuators allowing 

modularity, (ii) the isolation of the reaction layer from the actuation layer, eliminating sample 

contamination in the reusable parts (iii) high-throughput capabilities and (iv) compatibility 

with automated pipette loading. The functionality of the platform is successfully validated via 

the parallel purification of genome segments, using a 4-channel chip, prior to the complete 

assembly of a recombinant plasmid.  

2. Materials and Methods 

2.1. Fully decoupled microfluidic concept 
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The decoupling concept, illustrated in Fig.1, employs a multi-layer, but physically detachable 

system. The chip contains a rigid layer (A) for the accurate alignment of the chip with the 

underlying platform, combined with an elastic and deformable layer (B) acting as a 

membrane for closing valves via pneumatic actuation as well as sealing the chip and isolating 

it from the platform. The membrane is flexible enough to bend and close the valve fully, yet 

strong enough to sustain repeated actuations. The flow inside the microfluidic channels is 

accurately controlled by a separate underlying control platform (C) which integrates an array 

of pneumatic microactuators for actuating the various elastic membranes of the system and 

magnetic and thermal actuators for performing biological reactions. No tubing connection is 

necessary on the microfluidic chip and the disposable passive part is simply clamped on a 

layer of silicone O-rings (Polymax, UK) embedded in the integrated control platform (not 

shown in Figure 1). Silicone O-rings allow a good seal at each of the chip-to-platform 

pneumatic connections. For scale-up purpose, the o-ring layer may be replaceable by a 

moulded elastomer layer. By decoupling the functions pertinent to the chip and control 

system, a simple low-cost polymeric chip can perform complex biological protocols 

involving pumping, mixing, reaction, and purification in a fully automated way.  

2.2. Purification chip design 

The architecture of the purification chip consists of four independent channels (250 µm 

width, 39 mm length), each having (i) an input and output well (4 mm in diameter, 4 mm 

depth), (ii) a pump featuring two valves and an actuation chamber, (iii) a reaction chamber (9 

mm x 3 mm x 0.2 mm) and (iv) a back valve to isolate the reaction chamber from the output 

well. To make the chip fully compatible with existing fluid handling robotic solution, input 

and output holes or wells have been spaced with the standard 96-well plate pitch (Fig 1, 

bottom-right insert). The reservoirs on the microfluidic chip can be prefilled using manual or 

robotic pipetting mechanisms, thereby complying with existing laboratory equipment. The 
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number of channels was kept to four for simplicity and allowing for the parallel purification 

of the three genome segments (c.f. Biological Materials), plus a negative control. The chip 

footprint allows potential for scaling-up the number of channels to accommodate 16 

channels. The chip fabrication is described in supplementary material.  

2.3. Pneumatic, thermal and magnetic actuators and control 

Accurate control of the micro-actuators is essential to the overall performance of the 

microfluidic device. In this study, compressed air actuators have been chosen for their 

maximal force and displacement. The platform itself includes the pneumatic channel layers, 

which have been cut in three 2mm thick PMMA layers bonded using Epoxy glue. This unit 

fits on a larger base with threaded ports to accommodate air connectors. This base is itself 

fixated on an optical table for ease of use and great stability. The electrovalves (D123201, 

Dynamco, US) placed on each side of the base were controlled via a Data Acquisition (NI 

cDAQ-9172, DAQ-9403) Card (NI, USA) and fed with 2 bar compressed air redistributed to 

the platform via several permanently attached tubing segments.  Using the decoupling 

concept, other microcomponents can be added to the control platform without raising the cost 

of the disposable plastic chip. A Peltier device (ThermaTec HtHot, Melcor, UK) measuring 

6mm x 6mm was mounted with a thermo couple (Labfacility, Farnell, UK). The Peltier 

device and thermo couple were placed below the reaction chambers to provide a specific 

temperature profile.  Similarly, a magnetic control device was mounted on the platform for 

mixing and trapping purpose. Fig.1 shows the integration of a strong magnet on a robotic arm 

above the reaction chamber. Streptavidin coated magnetic beads (NEB, USA) were pumped 

into the reaction chamber with a conventional pumping cycle and trapped there via the 

placement of the magnet close to the chamber. The use of the magnetic beads is multifold.  

The motion of magnetic beads inside the reaction chamber increases the mixing and they 

allow the capture of biological components for magnetic activated separation. In order to 
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automate protocols and control in parallel the thermal profile, magnetic actuation and 

pumping, a custom-made Labview algorithm (LabVIEW 2008, NI) and a user-interface were 

developed. A snap-shot of the user-interface panel can be seen in supplementary information. 

To assess the performance of the control platform and chip, a digital USB microscope 

(Dinolite, Big C, USA) was placed above the device to visualise real-time variations of the 

flow.  

2.5. Biological Materials 

For the genome segment assembly and purification experiments, DNA inserts and vectors, 

oligos and reagents were supplied by Gingko Inc. (Boston, USA) which included: (i) The 

high copy BioBrick
TM

 assembly pSB1C3 plasmid (Che 2008) predigested with EarI used as a 

“backbone” vector for the assembly and carrying chloramphenicol resistance (ii) inserts 

coding for the green fluorescent protein (GFP) or red fluorescent protein (RFP), (iii) 4 part 

linkers or overhangs, and 4 purification oligos. Additionally, 15 to 30 µL of streptavidin 

coated magnetic beads solution (NEB, USA) with a diameter of 1µm were used for DNA 

capture during the purification experiment. NEB 10-beta competent E.Coli cells (NEB, USA) 

were used for the transformation of the genome assembly obtained and the verification of the 

functionality and purity of the off-chip and on-chip protocols. The high efficiency 

transformation protocol suggested by the manufacturer was followed. Cells were plated on 

Lysogeny broth (LB) Agar Plate with chloramphenicol (Technova, USA) and cultured for 

approximately 12 hours (overnight) at 37ºC. After 12 hours, plates were removed from the 

incubator and placed in a refrigerator for 4 hours. This step increased the fluorescence of the 

colonies. Colonies on each plate were inspected under UV light and counted. All cells visible 

on the plate carry chloramphenicol resistance, which mean they have been successfully 

transformed with the plasmid. Successful purification and final assembly of plasmid vector 

and inserts (GFP and RFP) lead to colonies exhibiting chloramphenicol resistance and a 
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modified strain (green or red colonies). Gel electrophoresis was first considered for a direct 

quantification of various DNA segment levels in and out of the chip. However, the detection 

of small levels of DNA segments was found be impossible to obtain, while a single plasmid 

can successfully transform one single cell. Therefore, the success of the purification was 

verified indirectly by establishing the ratio of colonies with the correct phenotype versus the 

total number of colonies in the plate after assembly. For illustration, a 50% ratio corresponds 

to half of the cell population being transformed by a plasmid exhibiting the antibiotic 

resistance and the modified strain (successful purification and ligation), while the other half 

of the population is exhibiting only the antibiotic resistance (unsuccessful purification leads 

to failed ligation between the plasmid backbone and RFP or GFP parts).  

2.6. Genome segment assembly and two-part purification 

In order to demonstrate the full functionality of the chip, the parallel purification of several 

genome segments was demonstrated and validated through the assembly of a plasmid 

backbone and a part coding for the red or green fluorescent protein, (RFP or GFP) as 

presented in Fig.2A. The pre-assembly, two-step purification and final assembly are briefly 

described.  The first part of the assembly consists of a ligation to combine RFP and GFP parts 

with part linkers. This step is performed off-chip as described in (Che et al. 2012). This is 

followed by a two-step sequential purification of the pre-assembled parts. The purpose of the 

purification is to wash and remove the unwanted or unbound oligos from the pre-assembled 

part mix. In a first instance, purification oligos and magnetic beads bind to one end of the 

pre-assembled parts (RFP or GFP parts and part linkers) and are retained via magnetic 

actuation in the reaction chamber, while unwanted and unbound oligos (part linkers) are 

washed away. In the second purification step, purification oligos and magnetic beads bind to 

the other end of the pre-assembled part and the remaining unbound oligos are washed away. 

The details of purification mechanisms will be fully published separately.     



11 
 

 

2.7. On-chip purification protocol  

The microfluidic purification protocol detailed in Fig 2.b. is carried out in two chips to avoid 

contamination between the two steps. The second step of the on-chip purification protocol is 

identical to the first one but for two points. Firstly, the ligation mix was replaced by the 

elution product from the first step of the purification protocol and the purification oligos are 

different. Following the two-step microfluidic purification, a ligation reaction combines the 

purified plasmid and parts (GFP or RFP coding parts) into recombinant DNA which is 

transformed into competent E.Coli cells as described in the biological materials section.  In 

parallel to all microfluidic experiments, bench-top controls using conventional bench fluid 

handling procedures such as pipettes and plate heaters were performed to provide 

performance comparison. For a fair comparison, the bench protocol followed closely the 

microfluidic protocol, using the same reagents volumes and waiting time. A negative control 

consisting of water was used in all experiments to verify the risk of contamination across the 

channels. 

3. Results and discussion  

3.1. Flow rate measurements 

The effects of the pneumatic actuation frequency, fluid viscosity and thickness on the 

membrane on the flow rate produced were investigated. For this purpose, chips comprising 

two inlets, one outlet and a reaction chamber (as shown in the photograph insert in Figure 1) 

were fabricated. The chips were loaded with either water mixed with food dyes for 

visualisation or with 20% glycerol (V/V) (Sigma-Aldricht, UK) in water to assess the effect 

of liquid viscosity on the pumping performance. Investigating the chip performance under 

different viscosity is especially important for biological applications where products may be 

mixed with stabilising solutions at higher densities than water. Fig.3.a shows the evolution of 
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pumping flow rate as a function of the pumping frequency for different configurations. The 

highest pumping rate of 10 µLs
-1

 was achieved for a pumping frequency of 100Hz, a 

membrane thickness of 50 µm and water. Above 100 Hz, the flow rate decreases as the 

membrane does not have the time to close properly the cavity during the pulse. Additionally 

the optimal frequency is also restricted by the solenoid valve response time, which was 9 ms 

for 111 Hz (Figure 3a). The same set-up was tested with a solution of glycerol in water 

(20%). Glycerol is commonly used in biological protocols, and we wanted to demonstrate the 

possibility to pump this material through the same system.  The higher viscosity in the latter 

case reduced the flow rate to 8 µL/s and the optimal frequency was slightly shifted (110 Hz). 

However, due to a small data set, it is impossible to conclude whether this flow rate 

difference seen between the water and 20% glycerol mixture is statically significant and 

generalise this observation. The same chip design was tested with a thicker membrane (70 

µm), however, the flow rate performance of the chip dropped dramatically below 3 µLs
-1

. For 

the remainder of the study and biological characterisation, 50 µm thick membranes were 

used. A reliability study to compare the performance of a pump run after run was carried out. 

The inlet well was loaded with the same set volume each time, actuated with the same 

frequency and the time to empty the well was recorded. The inlet well was rinsed and 

carefully dried before a new run was started. The best reliability was achieved at low 

frequency (Relative Standard Deviation (RSD) as little as 1.1% for a pumping frequency of 

1Hz (Figure 3.b))and therefore the remainder of the study was performed between 1 and 5Hz.  

3.2.Characterisation of Magnetic control  

The use of streptavidin-coated magnetic beads is a central element of various biological 

purification protocols. Here the genome segments to be purified are captured and hold in the 

central chamber. 20 µL of 1 µm magnetic beads were pumped in the reaction chambers for 
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each purification step. A magnet was brought in close proximity to the reaction chambers 

(approximately 4mm). After a few seconds, all the magnetic beads were trapped in the 

chamber and the flow was reactivated. This succession of events is illustrated in Figure 4b. 

As the strength of the magnetic capture depends on the thickness of the PMMA substrate and 

the flow rate used, a window might be created in the PMMA substrate base layer above the 

chamber to allow a better magnetic trapping. In turn, a higher trapping force allows for the 

use of higher flow rate for washing steps. For a distance of 2 mm between the magnet and the 

chamber, the beads were held up to a driving frequency of approximately 4 Hz, effectively 

limiting the use of magnetic capture to flow rate below 1 µL.s-1 [A video of the magnetic 

trapping under a 4Hz flow rate is showed in supplementary information].  Above this 

threshold, a proportion of the beads is slowly washed away towards the output well at each 

pump stroke and at flow rate. Above 20 µL.s-1, magnetic beads can easily be flushed if the 

chip needs to be re-used. 

3.3.Characterisation of temperature control   

The elution of DNA molecules from Streptavidin coated magnetic beads necessitates a 

temperature of 65°C, which is provided by the Peltier device underneath the reaction 

chambers. To characterise the temperature control in the reaction chambers, thermochromic 

ink (Chromazone, UK) with a temperature of 47ºC (+/-2ºC) was used (Fig 4b). The small 

thermal mass of the reaction chamber combined with the control precision of the Peltier 

device allows a rapid and flexible temperature control in the reaction chamber. Even under a 

sustained flow rate (approximately 5 µL/s), the Peltier provided enough heat to maintain the 

desired temperature in the chamber (Fig 4.b-iii and suppl. material).  

3.4. Biological validation with parallel genome segment purification  

An assay for the parallel purification of genome segments was developed (cf Material and 



14 
 

Methods section), adapted for a microfluidic manipulation and used as the validation of the 

integrated platform and associated chip presented.  

3.4.1. Influence of wash cycles on part purification 

Up to 3 genome segments (backbone plasmid, RFP and GFP parts) parallel purification was 

demonstrated in the chip design outlined in section2 and Figure 2. For all parts, the volume of 

washing buffer was found to be critical for purification performance. Fig.5.A shows the 

purification improvement for washing volumes of 30 µL, 40 µL, 80 µL and 90 µL. The 

lowest purity of 57% is achieved for the smallest washing buffer volume (30 µL), while a 

purity above 90% is achieved for a volume of 90 µL. The purity linearly improves with the 

amount of washing buffer. These figures show that washing steps to remove unwanted oligos 

are the most critical steps in the on-chip protocol. Although it was found that larger washing 

volumes increase the purity of the final product, different optimisation strategies could reduce 

the volume actually needed to perform the washing; for example a reduction of the reaction 

chamber volume could enhance the mixing process. Furthermore, an improvement in purity 

was also noted with a change in the magnetic mixing regime, which might even further 

enhance the washing of unwanted oligos (data not shown). The whole single purification step 

took about 35 minutes, for all three genome segments to be purified in parallel. 

Comparatively, the duration of the “manual” bench control was longer as the magnetic 

actuation and elution steps have to be done serially for each tube. 

3.4.2. Cross-contamination control 

In the purification chip (Figures 1 and 2), each parallel channels are physically separated 

from one another. To study the possibility of cross-contamination via an exchange of 

solutions in the laminated layers or between wells, the fourth channel in the chip was always 

filed with DI water (negative control). This channel was actuated in the same way as the 

other channels, and sampled in the output well at the end of the purification protocol. A 
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ligation reaction with the content of the output well as insert and purified backbone plasmid 

as vector was carried out. It was expected that if contamination from adjacent wells 

containing GFP and RFP inserts was occurring, then colonies showing modified strain would 

grow on the control plate. Across all experiments carried out in this study, no contamination 

was found. A plate corresponding to this negative control is shown in Fig.5.f. These results 

indicate that no contamination occurs via the laminated layers or input wells.  

3.4.3. Validation of the platform for parallel genome segments purification  

DNA purification using magnetic beads has been demonstrated in microfluidic chips by 

several groups (Karle et al. 2009; Oblath et al. 2013) in the context of DNA extraction from 

cells and prior to PCR. However, no parallel purification of several long genome segments 

(several kb) has been yet demonstrated in the context of synthetic biology. Here the challenge 

is not to extract DNA from a sample but to remove undesired oligos from a genome sequence 

mixture before gene synthesis. Undesired or unbound oligos otherwise threaten the 

performance of the final assembly or synthesis if not removed (Carr and Church 2009). While 

in the first case (DNA extraction in prior to PCR), the performance of the chip will be 

assessed by directly measuring the amount of DNA extracted, in the later case the 

performance of the system is measured by transforming cells using the purified DNA to 

verify if all unwanted oligos have been removed from the initial mixture. Transformation 

results with RFP plasmids. The performances of the on-chip protocol are compared to the 

bench-top protocol for washing volumes of 90 µL. Both on-chip and bench-top control were 

performed on the same day and with the same reagents. The final assembled products were 

also transformed and cells plated on the same day. As shown in Figure 5.b, the on-chip 

protocol has comparable performance compared with the conventional protocol with 

respective ratio of cells with the correct phenotype: 91.85% (CV=2.47, N=2) and 90.15% 

(CV=2.19, N=2). In the absence of a robust statistical analysis due to a small data set, these 
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results show that the on-chip results are comparable to the bench control but may not be 

statistically different. Figures 5.d and 5.e display the transformed cells on agar plates. The 

associated negative control described earlier is shown in Figure 5f. In Figure 5.d the cells 

have been transformed with the recombinant DNA parts after a double purification on-chip, 

while in 5e, the cells are transformed using the off-chip derived products. The yield is on the 

same order of magnitude in both plates. Transformation results with GFP plasmids. In the 

transformations with the recombinant DNA containing the GFP insert the on-chip 

purification was found to be substantially more efficient by approximately 20% than the 

bench-top off-chip experiments (on-chip ratio of correct phenotypes: 75.4%, off-chip ratio of 

correct phenotypes: 58.3%, p-value = 0.007) (Figure 5.c). The two repeats of the on-chip and 

off-chip results were found to within the same range with a small coefficient of variation  (on 

chip: CV=1.3, N=2; off-chip CV=1.3, N=2) indicating that this process might have a good 

overall repeatability. Generally, the purity of colonies with GFP parts was however lower 

than the purity of colonies with RFP parts (on average 16.5% lower for the on-chip process 

and 31.9% lower for the off-chip process). These differences with the RFP purification tests 

could be explained by a difference in transformation efficiencies of the competent cells used. 

However, even in the absence of a statistical analysis, these results indicate that the on-chip 

protocol could potentially outperform the conventional bench protocol. Further research is 

needed to increase the present data set and generalise these conclusions. Channel-to-channel 

reproducibility. On a chip, every channel and associated reaction chamber are expected to 

perform the same. In one experiment using 90 µL wash volumes, two RFP parts purifications 

were performed side-by-side in the middle channels. A variation of purity inferior to 2.7% 

was found between the two channels (which respectively led to 93.6 and 90.9% of correct 

phenotypes, bench control: 88.6%), indicating that good reproducibility of the process may 

be achievable across channels on one chip.    
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V. Conclusions  

In conclusion, the microfluidic purification is identical or performs better (by up to 20%) than 

the conventional equivalent which validates the use of an automated microfluidic device and 

protocol for the parallel purification of genome segments for synthetic biology applications. 

The decoupling concept behind the platform permits the use of low-cost polymeric chips 

while allowing the process of complex biological protocols in an automated fashion.  

Although research and commercial solutions have been developed to alleviate the issue of 

sample introduction in the chip, including the Fluidigm chip kits and the CARD device from 

Rheonix, the system presented in this article is readily and fully compatible with existing 

liquid handling workstations to enable automated genome purification and assembly at a 

large range of volumes (~ 0.5 µL–1 mL). Temperature and magnetic controls have been 

integrated in the permanent platform and demonstrated with a simple chip design. The 

disposable chip is simply clamped in less than a few seconds onto the platform and does not 

require the plugging of any tubing.  In this paper, we have demonstrated an application of this 

platform through the parallel purification of genome segments. Purification of up to four pre-

assembled segments in parallel was achieved on-chip, although the throughput could easily 

be quadrupled, as the chip format allows up to 16 channels with the same features. 

Additionally, the throughput could even be higher if the dimensions of the wells (and scaled-

down valves and other features) were spaced out with the standard 384-well plate pitch. 

Purification was demonstrated on-chip with up to 20% better purity compared to the bench-

top equivalent protocol. DNA binding to the microfluidic material (PMMA, polymer 

membrane) should be taken into account and might need to be characterized in the future. 

The decoupled platform and its different actuation mechanisms are highly versatile many 

applications could benefit from this automated, small scale device including cell culture and 

portable diagnostics. 
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List of Figures 

 

Fig.1: Clamp n’Play modular platform concept. Schematic diagrams of the decoupling 

strategy with a bird-eye view of the disposable microfluidic chip and pneumatic integrated 

platform. The disposable chip is clamped into position on the control platform. After use, the 

chip is unclamped and disposed as biological waste. The circled letters describe: A) the 

disposable and detachable PMMA chip (total thickness, approximately 4.5 mm). For chip 

fabrication and details of the various layers, check supplementary material  B) the elastomer 

membrane (approximately 50µm thickness) which seals the PMMA chip, isolates the chip 

from the platform while allowing fluid actuation via the platform C) the underlying 

permanent control platform with actuators (pneumatic, thermal and mechanical). The active 

control layer is isolated from the sample thereby eliminating the risk of sample-to-sample 



23 
 

contamination. The circled numbers describe: 1) An input well (total volume approx 50 µL) 

2) A valve element (total volume approx 0.2 µL) 3) A pumping chamber (total volume 

approx 1 µL). The pump itself consists of two valve elements and a pumping chamber 4) A 

reaction chamber (total volume 5-20 µL) 5) An output well (identical to the input well) 6) 

Compressed air access for the opening and closure of the pneumatic actuators (valves and 

pumping chamber). X represents a closed valve, and O, an opened valve. The pumping 

pattern was XOO, XXO, OXO, OXX, OOX, XOX. By default, the valves and pumping 

chambers were kept closed. Inserts show (i) the temperature control under the reaction 

chamber. The use of a thermochromic ink with a temperature switch of 47°C allows the 

visualisation of the temperature variation. Here, a Peltier element is set at 49°C and flow is 

actuated with a 4 Hz frequency, (ii) the magnetic actuation for mixing and target capture in 

the reaction chamber. 10 µm streptavidin magnetic beads are trapped by the magnet and can 

be moved around in a pack and (iii) a disposable chip made of out PMMA and filled with red 

dye. 

Figure 2: (a) Biological protocol from genome segment pre-assembly to transformation into 

competent cells. The parts are pre-assembled off-chip using overhangs (data not shown, refer 

to (Che et al. 2012) for a full description of the assembly process). The purification of four 

pre-assembled parts is performed in parallel on the integrated platform on a disposable chip. 

After the double-purification, a ligation reaction combines RFP or GFP inserts with plasmid 

PsB1C3 and the recombinant DNA is transformed in competent cells. The cells are plated on 

Agar plates and incubated for 12h, after which the colonies are observed UV light and 

counted using an imaging software. The first three steps with an asterisk are repeated for all 

the parts: RFP, GFP and the plasmid psB1C3. The purification of all parts is performed in 

parallel on a microfluidic chip (b) A simplified biomicrofluidic purification protocol in 

four steps. Stage I: Washing and magnetic bead loading. The four channels of the chip 
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were first washed with DI water to remove any unwanted particles after the fabrication. All 

the valves were closed, the magnet on the robotic arm was in place above the chamber and 

20µL of streptavidin-coated magnetic beads were loaded into the wells by manual pipetting.  

The flow (4Hz) was activated until the input well was empty and the beads had travelled to 

the reaction chambers via parallel pneumatic actuation of the pumps. The output wells were 

regularly emptied with a pipette. The flow direction is indicated by an arrow. The magnet is 

placed above the reaction chambers to capture the beads. Stage II: Oligo solution and 

binding buffer loading and mixing 1µL of oligos solution was pipetted into all wells as well 

as an additional 10µL of binding buffer was pipetted into all the wells. These solutions were 

pumped into the reaction chamber; once the wells were emptied the actuation was stopped. 

The valves at the entrance and exit of the reaction chamber were closed and the magnet was 

moved linearly through robotic or manual control for about 30 s. The magnet was then moved 

away from the chamber and the mixture was incubated for 10 minutes at 20ºC. After 

incubation, the magnet was placed against the reaction chamber. Stage III: Ligation mix 

loading, mixing and incubation. Next, 1µL of NaCl solution and 10µL of ligation mix are 

introduced in the same way and the magnet is moved to allow the mixing of the reagents. The 

unbound oligos are washed away with a washing buffer (not shown, for volumes cf results). 

Stage IV: Elution 15µL of elution buffer was pipetted in each of the wells. About 5 µL of 

buffer was pumped into the reaction chamber and mixed gently using the magnet. The output 

wells were emptied. The heater was set to 65ºC and allowed to reach this temperature at 

which point the reminder of the input wells was pumped through. 10 µL of elution solution 

was pipetted from each output well and stored into labelled tubes for off-chip assembly. 

 

Figure 3:  Characterization of flow rate. (a) Influence of driving frequency and fluid 

viscosity on the flow rate. The experimental points are connected with a B-Spline function. 
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The star on each curve is a data point that marks the optimal frequency on each curve. (b) 

Performance variations of a pump at operational frequency of 1Hz. The error bars denote the 

Standard Deviation (n=5), of respectively 0.55, corresponding to a Relative Standard 

Variations (RSD) of 1.1%.  The red line denotes the average across the control group 

 

Figure 4: Magnetic and thermal actuation (a) Photographs of the magnetic capture inside 

the chamber (a-i) the chamber filled with water (a-ii) the chamber filled with beads (a-iii) The 

chamber with the magnet applied and the beads aggregating. (b) Photographs of the chamber 

above the Peltier device, filled with thermochromic ink (Tt=47°C 2°C). (b-i) Before the 

Peltier element is activated (b-ii) 10 s after the Peltier element is activated, the control 

temperature is 49°C, no flow (b-iii) Under a driving frequency of 4 Hz. For a video of (b-iii) 

refer to online supplementary material section.   

 

Figure 5: Validation of an integrated platform for on-chip purification of DNA segments (a) 

Influence of the washing volumes on the purity in the RFP plasmid transformation. The 

highest washing volume (90 µL) gives the best result in terms of performance after assembly 

(93.6%) (b) Comparison of on-chip (93.6%, CV=2.47, N=2) and off-chip purity (88.6%, 

CV=2.19, N=2) after the assembly of the RFP parts in the plasmid vector. The difference 

between the two sets of data is not statistically significant with p-value = 0.7 (>0.01) (c) 

Comparison of on-chip (75.3%) and off-chip purity (58.3%) after the assembly of the GFP 

parts and plasmid vector. The difference between the two data sets is statically significant 

with a p-value=0.0075<0.005 (Student t-test, the data is representative of 2 independent 

experiments) (d) Plating results after transformation of competent E-Coli cells with 

recombinant DNA containing plasmid vector and RFP inserts purified on-chip. To facilitate 

the counting and visualisation, colonies exhibiting the RFP strain have been coloured using 
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open-source illustration software (ImageJ). The red arrows points on a colony with the 

modified strain. A white arrow points out on a colony with an un-modified strain (e) Plating 

results after transformation of competent E-Coli cells with recombinant DNA containing 

plasmid vector and RFP inserts purified off-chip (f) No cells are present in the negative water 

control, demonstrating the absence of cross-contamination between the parallel channels and 

thereby the absence of leakage which could occurred through delamination in the chip     
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Figure 2
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Figure 5 
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