
This version is available at https://strathprints.strath.ac.uk/61005/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Multiplier analysis of re-spending rebound effects

Professor Karen Tuner, Antonios Katris
Centre for Energy Policy, University of Strathclyde

1. Introduction
Rebound effects occur when potential energy savings from an energy efficiency improvement are eroded as a result of a range of economic responses to changes in costs of energy services, incomes and prices throughout the economy. We focus on a particular type of rebound effect, which results from re-spending decisions as households realise savings due to reduced energy requirements.

2. Multipliers in our work
By using multiplier analysis we can estimate the impact that changes in final demand have in energy use/CO$_2$ emissions. The graph shows the increase to energy use and CO$_2$ emissions in a number of sectors, resulting by an increase of their final demand by £1m.

3. A simple improved efficiency scenario
To explore how multipliers could be used to identify the impact throughout the economy as a result of improved energy efficiency, we use a simple illustrative scenario. We assume that improved energy efficiency in UK households leads to a 10% reduction in spending to UK EGWS.

4. The Carbon Saving Multiplier
We propose the use of a carbon saving multiplier (CSM). CSM is calculated using the following formula.

$$ CSM = \frac{\text{Change in embodied emissions}}{\text{Direct household emissions savings}} $$

In the examined scenario this corresponds to the ratio of total global savings (-17,847 kt) over the direct savings of UK households (-6,172 kt) giving a CSM of 2.89. This is interpreted that for each kilo-tonne (kt) of CO$_2$ saved by UK households a further 1.89 kt are saved globally.

However, when the savings from improved energy efficiency are re-spent then we a subsequent increase in energy use/CO$_2$ emissions of the sectors where the savings are re-spent, due to increased production to meet increased final demand.

5. Erosion of the CSM
The CSM is eroded as a result of different re-spending decisions. The degree of erosion depends on the energy/CO$_2$ emissions intensity of the sector where re-spending is directed. The bar-chart shows the different levels of erosion under different re-spending scenarios compared to the original level of CSM.