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Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as
environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing
to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by
horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to
predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per
week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and
the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and
databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving
rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance
prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa
causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic
resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction
of antimicrobial resistance.
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Introduction

The damaging effect of antimicrobial resistance
(AMR) in infectious diseases is evident and a major
preoccupation around the world. Bacterial infec-
tions are currently observed with ancient as well
as emerging pathogens resistant to all classes of
antibiotics. Bacterial infections claim at least 70,000
lives each year in Europe and 23,000 in the United
States; at least two million infections occur each
year worldwide.1 It is estimated that hundreds of
thousands of people die each year in other areas of
the world owing to AMR. Considerable variation is
observed between countries, because data are sim-
ply not available or poorly described in the pat-
terns of AMR observed. Different countries around
the globe experience different problems in health
care, public health and services, and overall hygiene.

AMR may thrive in some environments, but solid
data are virtually nonexistent. The rise of AMR
has not gone unnoticed by governments around
the world. For example, the UK government com-
missioned the O’Neill review in 2014. This report
predicts that, without intervention, the number of
deaths attributable to AMR will rise to 10 million in
2050, corresponding to one death every 3 seconds.2

In modern societies with excellent healthcare sys-
tems, the most recent technologies in diagnostics
of infectious diseases, and an arsenal of therapeu-
tics, the costs of treatment is continually increas-
ing because of AMR. The mortality rate of patients
caused by AMR is still very high. In aging popula-
tions, high-level medical treatment with the most
recent health care, including long periods in inten-
sive care units and transplantation, and long-term
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age-related chronic diseases have dramatically aug-
mented susceptibility to AMR bacterial infections.
This has led to the emergence of pan-resistant infec-
tions, meaning that no effective treatment is cur-
rently available.3

In many countries, antibiotics are often used
excessively, in a very broad and unregulated
fashion.2 They are often readily available over the
counter, sometimes prescribed, and in other cases
prescribed but with completely different prescrib-
ing habits, leading to excessive use and unnecessary
overuse, which contributes to AMR. This is a worst-
case scenario in infectious diseases, as the global
spread of AMR in bacterial pathogens is rapid, with-
out borders, and amplified by the speed and volume
of intercontinental travel.4 Moreover, the com-
plexity of polymicrobial communities creates ideal
conditions for what we propose to call the “AMR
sprawl.”

Armed with an arsenal of new bacterial genomic
and bioinformatic tools, coupled with a certain
level of understanding of the biology of a bacte-
rial pathogen, such as Pseudomonas aeruginosa, and
its tendency to evolve AMR, there is an excellent
opportunity to develop creative approaches in deci-
phering AMR.5–8 The challenge is to have the capa-
bility to use predictive values that lead not only to
rapid intervention and therapy but also to molecu-
lar epidemiological surveillance. Indeed, the O’Neill
report also recommends increased surveillance and
improved diagnostics in order to prevent unneces-
sary use of antibiotics.2

Here, we highlight recent creative concepts,
hypothesis-driven discoveries in predicting AMR,
innovative strategies to limit its dissemination,
and a way out of AMR. In specific cases, these
novel approaches and disruptive technologies are
promising and will certainly revolutionize the
traditional view of using standards, such as the
disk diffusion methods and the determination of
minimal inhibitory concentrations (MICs), for
predicting AMR. In other cases, development is
still in its infancy, as was the case for polymerase
chain reaction (PCR) in 1984. Overall, these new
approaches are significant but limited advances in
AMR prediction—a newly emerging field that will
have a major impact in clinical microbiology and
molecular epidemiology.9 AMR prediction presents
an enormous challenge, and some of its current
limitations are discussed.

Pseudomonas aeruginosa as a model
system for the validation of AMR
prediction

P. aeruginosa is an environmental Gram-negative
bacterium that exhibits extensive metabolic adapt-
ability, enabling it to thrive in an extraordinary
range of niches (for a review, see Ref. 10). It is also
a highly successful opportunistic pathogen, causing
a wide range of acute and chronic infections.11

Although transmission routes remain difficult to
establish, it is generally accepted that P. aeruginosa
is a ubiquitous opportunistic pathogen found in
the environment. For example, most cystic fibrosis
(CF) patients become infected with P. aeruginosa
from the environment, and it is difficult to devise
strategies to counter such infections.12 P. aeruginosa
has inherent resistance to many antimicrobial
classes. Its ability to acquire AMR via mutations to
all relevant treatments and its frequent role in seri-
ous infections (i.e., bacteremia) with high mortality
rates, have become true nightmares since the early
1990s.13

Molecular mechanisms of resistance in P. aerugi-
nosa include prevention of access to target, increased
efflux, changes in antibiotic targets by mutation,
modification and protection of targets, and direct
modification of antibiotics (for details, see Ref. 1).
Even antibiotic-susceptible strains of P. aeruginosa
have considerable defenses due to intrinsic AMR.
Ongoing international surveillance of P. aeruginosa
AMR is fundamental to monitor trends in suscepti-
bility patterns and to appropriately guide clinicians
in choosing empirical or directed therapy.14

Whole-genome shotgun (WGS) sequencing of P.
aeruginosa provides a privileged perspective of the
dramatic effect of mutator phenotypes on the accu-
mulation of random mutations, most of which are
transitions, as expected.15 Moreover, a frameshift
mutagenic signature, consistent with error-prone
DNA polymerase activity as a consequence of SOS
system induction, is also observed. This effect was
observed for the evolution of resistance to all antibi-
otics tested, but it was higher for fluoroquinolones
than for cephalosporins or carbapenems. Analysis
of genotype versus phenotype confirmed expected
resistance evolution trajectories, but also revealed
new pathways. Qualitative RNA sequencing was
used to identify the key genetic determinants
of AMR in 135 clinical P. aeruginosa isolates
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from diverse geographic origins and infection
sites.16 By applying transcriptome-wide association
studies, adaptive variations associated with AMR of
fluoroquinolones, aminoglycosides, and �-lactams
were identified. Besides potential novel biomarkers
with a direct correlation to AMR, global patterns
of phenotype-associated gene expression and
sequence variations were identified by machine
learning approaches.

Studies of the genetic structure of microbial pop-
ulations are central to understanding the evolu-
tion, ecology, and epidemiology associated with
the origin of AMR. Numerous studies describ-
ing the genetic structure of P. aeruginosa popu-
lations are based on samples drawn mostly, even
overwhelmingly, from clinical collections.17 This
approach has resulted in a limited view of P. aerug-
inosa with respect to defining the potential evolu-
tionary history of disease-causing lineages, as well
as the rapid development of AMR by the resis-
tome and distribution by horizontal gene transfer
via the mobilome.18,19 A central question is: Can
we define environmental and clinical P. aeruginosa
isolates with distinct gene contents for virulence
and AMR? To answer this question, we are devel-
oping a proof-of-concept approach based on bac-
terial genomics and a well-defined collection of P.
aeruginosa strains.5

Driven by the advent of next-generation sequenc-
ing (NGS) coupled with bioinformatics, we are
on the verge of significant technological advances
at the interface between bacteriology and clinical
practice.20,21 Although we have made significant
progress in understanding the variations within
the species P. aeruginosa, including the identifica-
tion of AMR transmissible strains associated with
greater patient morbidity, there is still a lack of clar-
ity and consensus. There are three key areas where
improvements in our understanding of P. aerugi-
nosa genomics would lead to benefits in infectious
disease and human health: (1) given the clear link
between infection with P. aeruginosa and patient
morbidity/mortality, we need to better understand
how patients become infected, including the role of
cross infection; (2) given the limitations of current
antibiotic therapy, especially in relation to chronic
infections, we need to develop better and new thera-
peutic approaches; and (3) we need to identify better
prognostic markers and detect AMR more rapidly

to enable clinicians to make better evidence-based
decisions on patient care.

Identification of emerging P. aeruginosa
transmissible strains and their AMR
profiles

The experiences in the Liverpool, UK clinics and
in Canada highlight the need to identify emerging
transmissible strains early. Once the Liverpool
Epidemic Strain (LES) isolates were identified, it
was possible to design a simple PCR test, which is
now used widely in UK CF clinics.22,23 However, in
reality, most CF patients at the Liverpool clinic were
infected with the LES before it was discovered, and
although segregation measures have led to a wel-
come decline in new cases, the adult unit remains
dominated by this strain. Encouragingly, studies
elsewhere in the world also show that patient seg-
regation efficiently reduces the spread of epidemic
clones.24,25 Hence, we need strategies to make earlier
interventions based on rapid identification of new
transmissible strains. However, to achieve this,
we require a greater understanding of the general
population structure of P. aeruginosa and predictive
capacity for AMR. Key to this is the identification
of strain types that are not present in the CF
population because they are of higher prevalence in
the environment. There have also been examples of
multiple CF patients in Germany carrying the same
strain, known as P. aeruginosa Clone C.26 However,
we know that Clone C is one of the most abundant
clones of P. aeruginosa strains.27 Hence, it is likely
that in any CF patient cohort, there will be multiple
CF patients infected with this strain, because
they acquired their infections from environmental
sources. In contrast, the LES has not been identi-
fied from other environmental or clinical sources,
clearly implicating its transmission route as patient-
to-patient cross-infection. These two examples are
clear-cut. However, to make informed decisions
about the sources of other strains of P. aeruginosa
identified in multiple CF patients (cross-infection
or environmental), we need to have a much better
understanding of P. aeruginosa population struc-
tures and determine whether links exist with other
types of P. aeruginosa opportunistic infections. To
achieve this, we need to exploit bacterial WGS using
NGS, predict AMR, and couple the data to tran-
scriptomics via RNA sequencing (RNA-Seq) in a
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well-defined pipeline in as short a time frame as
possible that would be amenable to the clinic. We
must devise robust, unequivocal, and portable
strategies for strain genotyping that will not only
(1) enable the identification of P. aeruginosa strains
present among isolates at higher than expected
prevalence, but also (2) allow us to search for
links between strain genotype, clinical outcome,
and AMR and (3) design epidemiologically and
clinically relevant strain panels for anti-infective
testing using clear, evidence-based criteria.

P. aeruginosa strain diversity and AMR

Over the years, there have been many approaches
to the typing of P. aeruginosa strains, driven by
the availability of the technology, costs, and ease of
use. Some of these approaches are poorly portable
between laboratories (RAPDs and ERIC-PCR) and
therefore difficult to use for anything other than
local outbreaks. Others (e.g., PFGE) have been con-
sidered as gold standards, but are again of limited
use for interlaboratory comparisons and are sus-
ceptible to genetic instability, such as that exhib-
ited during CF infections.22 There have also been
a number of different methodological approaches
to define the population structure of P. aerugi-
nosa, each comparing collections of isolates from
diverse geographical, environmental, and human
sources, using methods that readily allow compar-
isons between laboratories.28,29 The ArrayTube,30

MLST,31 and VNTR32 genotyping schemes have
all indicated extensive diversity among P. aerugi-
nosa isolates, but with dominant clones, clusters, or
clonal complexes that are more widespread among
the general P. aeruginosa population. However,
each of these approaches has limitations. They can
be technically demanding, time-consuming, and
expensive to carry out. There is clear evidence that
NGS-based approaches, such as single-cell genome
sequencing and portable real-time sequencing (e.g.,
NanoPore MinIon), will eventually offer far better
resolution and become cost-effective solutions to
clinical diagnostic laboratory practice.33 In addi-
tion to genotyping for strain surveillance, NGS
approaches also generate a wealth of additional
data that can be exploited for clinical impact, such
as the identification of (1) markers for use in
prognostic approaches, (2) novel therapeutic tar-
gets, and (3) genotypic markers for the prediction
of AMR.

Exploiting P. aeruginosa genomics
as proof of concept for AMR prediction

The basic principles on which clinical bacteriology
practices are based have altered little over the past 50
years. In the context of chronic lung infections, such
as those typical in CF and in opportunistic infec-
tions in intensive care units, there are severe limita-
tions to these approaches, particularly with P. aerug-
inosa. Because P. aeruginosa populations are mostly
found in biofilms34 and because strains diversify
phenotypically and adapt rapidly to their hosts,35

antimicrobial susceptibility profiles based on MICs
and disk diffusion methods applied to single isolates
are poorly predictive of therapeutic efficacy.36 Addi-
tionally, highly resistant P. aeruginosa small-colony
variants (SCVs) are frequently isolated from patient
samples, yet they are rarely reported or further ana-
lyzed by clinical microbiology services.37

Studies on the genetic structure of P. aeruginosa
populations are central to understand the evolu-
tion, ecology, and epidemiology of opportunistic
infections. NGS technology gives us the means to
take such studies to new levels of sophistication,
by incorporating data from worldwide, representa-
tive strain collections to generate new genomics-
based microbiology workflows for direct clinical
benefit to patients and for epidemiological survey-
ing. The challenge of this approach will be to take
the genomic data through the translational pipeline
using cutting-edge bioinformatics and expertise
from leading researchers worldwide and develop
clinically oriented methodologies that are user-
friendly, evidence-based, and lead to direct clini-
cal impact. Namely, this should enhance prognostic
marker development for AMR prediction. However,
minimal metadata as well as international reporting
standards will be required.

Bacterial strain and genome databases:
first step in predicting P. aeruginosa AMR

The first Pseudomonas Genome Database (http://
www.pseudomonas.com/) was built upon the
Sanger sequenced genome of strain PAO138 with
a community-built annotation strategy and is now
attempting to incorporate metadata.39 As of Decem-
ber 2016, the Pseudomonas Genome Database con-
tained 2199 draft and 135 complete P. aeruginosa
genomes, and the numbers are likely to continue to
increase exponentially. This genome database is of
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immense value to the P. aeruginosa research com-
munity. In order to develop a strategy capable of
predicting AMR in P. aeruginosa, a detailed collec-
tion of strains and metadata is also essential. In
2013, the International Pseudomonas Consortium
funded by Cystic Fibrosis Canada was initiated to
link genomics and metadata and create a repository
of P. aeruginosa strains from around the world.5 The
consortium has had remarkable success in acquiring
strains and SCVs and is expanding its activities in
AMR prediction.

The International Pseudomonas Consortium
Database (IPCD) is a web application designed not
only to store data for the P. aeruginosa collection,
but also to provide access to each isolate’s pheno-
typic and genomic data (http://ipcd.ibis.ulaval.ca/).
Different levels of access may be granted, and data
modification or updates are strictly reserved for
the curators. The IPCD includes isolate identifi-
cation; environmental origin; host; provider; date
of isolation; geographical origin; phenotypic data
with a strong emphasis on AMR when available;
anonymized patient information; and technical
NGS information, such as library preparation, type
of NGS strategy, and details on the quality of genome
assembly and software used. The IPCD currently
contains NGS data and unpublished draft genomes
from CF patients and from most of the other types
of known human infections caused by P. aeruginosa.
For comparative genomics purposes, the IPCD also
contains animal infection isolates. Because of the
limited information in the literature on P. aeruginosa
environmental isolates encoding AMR, the IPCD
has a large collection of strains from plants, soil,
and water. Draft genomes of the IPCD are progres-
sively made publicly available by the National Center
for Biotechnology Information (NCBI), mainly in
BioProject PRJNA325248 (see “Publicly available”
in the IPCD’s search engine).

The IPCD contains 1588 entries for P. aeruginosa
isolates, with a time span of 135 years going back
to 1880 and covering 85 locations in 35 countries
on five continents. It includes previously described
collections28,31,40 and was assembled with the aim
of representing maximal genomic diversity. To this
end, various criteria were taken into consideration,
including geographic origin, previous genotyping,
phenotype, and in vivo behavior. We envision that
the collection could accommodate over 10,000
P. aeruginosa isolates.

To be a tool for predicting AMR, the quality of
draft genomes must be exceptional. In the IPCD,
for the 979 P. aeruginosa genomes sequenced and
assembled to date, the median number of scaffolds is
43 (median number of contigs is 46), for a
median coverage of 43×. The NCBI indicates, as
of December 2016, a repertoire of 2104 P. aerugi-
nosa sequenced genomes, with a median of 111 and
up to 2797 scaffolds. Because this publicly avail-
able P. aeruginosa data set has been available since
the early stages of NGS using different technolo-
gies, and because of the high variability in sequence
quality and limited metadata information that is
difficult to retrieve, it cannot be used for AMR pre-
diction. In P. aeruginosa, predicting AMR can only
be achieved using a strain and genome database
such as the IPCD, where not only metadata but also
an integrated approach for genome sequencing and
annotation will first define the proof of concept in
predicting AMR, its limitations, and how it may be
used in other species.

Phylogeny of P. aeruginosa linked
to the prediction of AMR

Although several P. aeruginosa genomes have been
completely sequenced and annotated as a single cir-
cular chromosome,38,41–44 the species phylogeny has
been clearly determined only recently.5,45 Knowl-
edge on this species’ diversity and evolution is essen-
tial in the development of tools for predicting AMR,
because knowledge about diversity could be closely
linked to the source of AMR, crucial information
for surveillance and epidemiology.

P. aeruginosa is well known to have an adaptable
genome between 5.5 and more than 7 Mbp. This
large genome contains more than 550 transcrip-
tional regulators, which presumably play exquisite
roles in coordinating the colonization of a wide
range of ecological niches.38 Comparative genomics
approaches have identified changes in surface anti-
gens, loss of virulence-associated traits, increased
AMR, overproduction of alginate, and the modu-
lation of metabolic pathways. Its genome also has
many regions that exhibit plasticity linked with
AMR.46

The core genome phylogeny for the 390 genomes
(Fig. 1) that constitute a key data set for predict-
ing AMR in P. aeruginosa strains can be divided
into three major groups,5 a result in agreement with
what was previously observed45 but with enhanced
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Stewart et al.45
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Figure 1. Unrooted tree of 390 P. aeruginosa genomes based on SNPs within the core genome as defined by Harvest (100
bootstraps). The total coverage of the core genome among all sequences was 17.5%. Strains are divided into three groups (blue,
orange, and green). The number of strains for each group is shown. White circles represent one or more strains that were sequenced
by the IPC, while black circles represent publicly available genomes. Adapted with permission from Ref. 5.

resolution. Furthermore, the third major group,
which includes strain PA7, has a genome sequence
revealing considerable divergence from other P.
aeruginosa strains.43 The PA7 genome was particu-
larly useful for unraveling the genetic basis of AMR
in this strain: point mutations in gyrA and parC con-
ferred fluoroquinolone resistance, and efflux sys-
tems with conserved and unique oprA components
were the primary modes of resistance. A more exten-
sive survey of P. aeruginosa is required to further
populate the tree. Still, these 390 strains are highly
valuable for predicting AMR because they originate
from a wide array of environmental, clinical, and
animal sources.

AMR databases: the second step
in predicting AMR in P. aeruginosa

Promising application of NGS technology includes
hospital infection-control surveillance programs
and community outbreak investigations.9 In addi-
tion to bacterial WGS sequencing and identifica-
tion at the subspecies and strain levels based on
single-nucleotide polymorphisms (SNPs) and aver-
age nucleotide identity for species confirmation,47

we entertain the possibility that a critical approach
should include a clear focus on predicting AMR.
Conducting AMR testing to guide therapy is one of
the major critical tests in a clinical laboratory. Bacte-
rial WGS has an excellent potential to predict known
gene content encoding AMR (i.e., the resistome).
WGS of Escherichia coli and Klebsiella pneumoniae
clinical isolates and BLASTn used to identify the
presence of relevant AMR genes demonstrated 96%
and 97% sensitivity and specificity for predicting
AMR, respectively.48

Predicting AMR will require two complimen-
tary approaches to have some degree of success:
comprehensive databases and software capable of
giving statistical prediction with a high level of
confidence. In addition, there is no a priori evi-
dence that all AMR can be successfully predicted
in all bacterial species. It has not been estab-
lished whether WGS coupled with AMR predic-
tion can be broadly applied to the full spectrum
of pathogenic bacteria, particularly those with a
diverse armamentarium of resistance mechanisms.
P. aeruginosa is certainly a case in point described
here.
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Figure 2. Heat map showing unique resistomes for 390 P. aeruginosa strains. The heat map was obtained by performing tblastn
searches using the sequences present on the Comprehensive Antibiotic Resistance Database (CARD)7 as queries and the genomes
as subjects. Green, perfect match to a sequence in the CARD; red, similar to a sequence in the CARD, within a curated e-value cutoff
(gene specific); and black, absent. The bar plot represents absolute frequency of each resistome. On the left of the heat map, genes,
proteins, and specific variants (*) are grouped according to their biological function or the resistance they confer. Adapted with
permission from Ref. 5.

The three major extensive AMR databases
are the Comprehensive Antibiotic Resistance
Database (CARD),7 Antibiotic Resistance Gene-
ANNOTation (ARG-ANNOT),49 and ResFinder.50

The CARD is one of the more sophisticated,
highly detailed, and comprehensive databases
(http://arpcard.mcmaster.ca), because it is a man-
ually curated resource containing high-quality ref-
erence data on the molecular basis of AMR, with
an emphasis on the genes, proteins, and muta-
tions involved. The CARD is ontologically struc-
tured, model centric, and spans the breadth of AMR
drug classes and resistance mechanisms, includ-
ing intrinsic, mutation-driven, and acquired resis-
tance. Its design allows the development of novel
genome analysis tools, such as the Resistance Gene
Identifier (RGI) for resistome prediction from raw
genome sequences. Recent improvements include
extensive curation of additional reference sequences
and mutations, development of a unique ontol-

ogy and accompanying AMR detection models to
power sequence analysis, new visualization tools,
and expansion of the RGI for detection of emergent
threats.6

As a proof of concept in predicting AMR in
P. aeruginosa, the RGI was used to detect AMR genes
and specific gene variants from WGS of 390 Pseu-
domonas strains (Fig. 2).5 Approximately one-third
of the 46 detected resistance genes were found in
most strains. On the other hand, the other two
thirds were found only in a restricted group of
strains, highlighting the great variability of P. aerug-
inosa strains with respect to AMR genes. This vari-
ation can only be unraveled by extensive sampling.
This information can be exploited to study the pool
of resistance genes present in clinical strains and
understand the links between clinical and environ-
mental strains in the context of AMR. Remarkably,
as depicted in Figure 2, AMR genes or mutants
were found for the major families of antibiotics
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used, including aminoglycosides, �-lactams, fluo-
roquinolones, fosfomycin, macrolides, polymyxin,
rifampin, sulfonamide, and tetracycline. On the
basis of our own work, as well as machine learn-
ing attempts from another team,51,52 the only single
gene that can be directly associated with a resistance
phenotype is gyrA, for which specific variants are
associated with quinolone resistance.53 This high-
lights the complex nature of the molecular basis of
AMR in P. aeruginosa and the challenge that is AMR
prediction for this organism.

As depicted in Figure 2, an impressive reper-
toire of efflux genes encoding multidrug resistance
(MDR) efflux pumps were also identified in these
390 P. aeruginosa genomes. This opens major ques-
tions: What is the significance of efflux in AMR and
what is a resistance gene? MDR efflux pumps will be
a major challenge in predicting AMR, particularly
in P. aeruginosa. MDR efflux pumps are chromoso-
mally encoded and capable of mediating resistance
to toxic compounds in several life forms. Hence,
they exhibit multiple functions relevant to bacte-
rial physiology in addition to mediating AMR.54

MDR efflux pumps contribute to both intrinsic and
acquired resistance to toxic compounds, includ-
ing in humans, where they have a role in resis-
tance to anticancer drugs,55 and in bacteria, where
they are involved in resistance to antibiotics.56,57

MDR efflux pumps are highly conserved in a given
bacterial species and are presumably implicated in
bacterial virulence,58 trafficking of quorum-sensing
molecules,59,60 and detoxification processes from
metabolic intermediates and toxic compounds, such
as heavy metals, solvents, or antimicrobials pro-
duced by other microorganisms.54 It is relatively
well documented, however, that efflux gene expres-
sion is a better predictor of efflux-mediated AMR
than the presence of efflux pump–encoding genes
alone.61,62 Regulatory genes that are known to have
an impact on AMR are part of the CARD; eight of
them are represented at the bottom of Figure 2. In
P. aeruginosa, an experimental study of 108 clinical
isolates revealed complex associations, where only
certain combinations of multiple regulatory muta-
tions and overexpressed efflux genes were associated
with MDR phenotypes.63 Although multiple efflux
systems have been characterized, namely MexAB-
OprM and MexXY complexes, their expression is
controlled by an intricate network of regulators and
modulators, not to mention the impact of environ-

mental conditions. 64 Hence, knowledge of each reg-
ulatory gene and its role(s) does not necessarily ease
the task of predicting phenotype from genotype.
Additionally, it has come to our attention that the
CARD nomenclature sometimes differs from what is
expected in terms of gene names. For instance, with
the current version, strain PAO1’s mexB is called
mexF. Moreover, some efflux genes tend to be iden-
tified in multiple copies per genome by the RGI.
Therefore, it is difficult to ascertain whether we are
really comparing the same locus when comparing
genetically diverse isolates of Pseudomonas.

The third step: software for predicting
AMR––a route out of resistance?

The Mykrobe Predictor software was able to detect
resistance to the five first-line antibiotics in over
99% of Staphylococcus aureus cases, matching
the performance of traditional drug-sensitivity
testing.65 For Mycobacterium tuberculosis, where
the genetic basis for drug resistance is less well
understood, the Mykrobe Predictor still detected
82.6% of resistant infections around 5–16 weeks
faster than traditional drug susceptibility testing.
Mykrobe Predictor can be rapidly updated with a
simple software upgrade that allows researchers to
detect new resistance mutations as they evolve. A
further advantage of Mykrobe is that it can identify
infections where a patient’s body contains a mix-
ture of both drug-resistant and drug-susceptible
bacteria.65 The ability to distinguish between
these bacterial subpopulations is an advantage
over conventional testing in detecting resistance
to second-line tuberculosis (TB) drugs. This is
important for diagnosing infections like extensively
drug-resistant TB, which is resistant to at least four
of the core TB drugs and is considered a global threat
to public health by the World Health Organization.

ARG-ANNOT is a bioinformatics tool that was
created to detect existing and putative AMR genes
in bacterial genomes.49 ARG-ANNOT uses a local
BLAST program in the Bio-Edit software that
allows the user to analyze sequences without a Web
interface. All AMR genetic determinants were col-
lected from published works and online resources;
nucleotide and protein sequences were retrieved
from the NCBI GenBank database. After building
a database that includes 1689 AMR genes, the soft-
ware was tested in a blind manner using 100 ran-
dom sequences selected from the database to verify
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that the sensitivity and specificity were at 100%,
even when partial sequences were queried. It will be
interesting to observe the potential of ARG-ANNOT
and its limitations when using a well-defined set of P.
aeruginosa genomes encoding multiple AMR genes.

The Integrated Rapid Infectious Disease Analysis
(IRIDA) platform combines PHYLoVIZ (enhanced
phylogenomics visualization), IslandViewer and
IslandCompare (genomic island, virulence factor,
and antibiotic-resistance gene identification and
comparison), GenGIS (phylogeography analysis
and visualization), CARD, and SNVPhyl phyloge-
nomics analysis (http://www.irida.ca/tools/). The
IRIDA platform is a promising integrated approach
but needs to enhance some of its capabilities in
Island and in virulence factor prediction with NGS
data.

OSPREY was able to predict the most likely muta-
tions to come out of certain bacteria, and clinicians
were then able to test treatment with antimicrobials
that are still in the experimental phase.66 Identifying
the most likely mutations while antimicrobials are
still under development indicates a better position
for success when these compounds become avail-
able for general use. OSPREY was used to specifically
pinpoint methicillin-resistant S. aureus, a common
cause of hospital infection. Developing preemptive
strategies while antimicrobials are still in the design
phase will provide a head start on the next line of
compounds that will be effective despite the AMR
mutations. If we can somehow predict how bacte-
ria might respond to a particular antibiotic ahead
of time, we can change the regimen for treatment,
plan for the next one, or rule out therapies that are
unlikely to remain effective for long.

Machine learning to predict AMR

A major drawback of database approaches is that, by
definition, they will never detect what is unknown.
This is why machine learning is such a promising
approach for predicting AMR. To date, however,
machine learning applied to P. aeruginosa AMR
has had mitigated success51,52 and will need to be
better adapted to the genomic complexity of the
species. Currently, there are two major approaches
that could be amenable to AMR prediction: rules-
based methods and machine learning methods. The
rules-based algorithm makes predictions based on
current, curated knowledge of AMR genes. The
machine learning algorithm predicts AMR and sus-

ceptibility based on a model built from a training
set of resistant and susceptible isolates. In general,
machine learning algorithms work by finding the
relevant features in a complex data set that enables
the ability to make a strong prediction.

In one of the largest phenotypic studies ever
performed on biocides and on AMR, a total of
1632 worldwide clinical strains of S. aureus were
analyzed.67 S. aureus is a major human pathogen, a
major cause of nosocomial infections, and a signif-
icant cause of foodborne infection. By combining
different machine learning methodologies, namely
decision trees and clustering, to explore the data in
order to find biologically and statistically significant
results, it was demonstrated that reduced suscepti-
bility to two common biocides, chlorhexidine and
benzalkonium chloride, which belong to different
structural families, is associated with multi-AMR.
An MIC greater than 2 mg/L for both biocides is
related to AMR in S. aureus.

A machine learning approach was used to predict
bacterial susceptibility using the presence or absence
of over 500 SNPs found in a data set of 652 M. tuber-
culosis isolates and used as features for a number of
classification algorithms.68 Susceptibility and AMR
were defined on the basis of phenotypic growth pat-
terns, and the results from the machine learning
method were compared to predictions based on the
presence of a set of known AMR mutations. Misclas-
sified isolates were also examined for commonali-
ties, revealing 11 potentially new AMR mutations.
The prediction of antibiotic susceptibility gave a
classification accuracy of 93% for predicting AMR
to isoniazid. Machine learning was capable of par-
ticularly high sensitivity, ranging between 95% and
100% across the four antibiotics examined.

WGS data were used from 78 clinical Enterobac-
teriaceae isolates identified to represent a variety of
phenotypes, from fully susceptible to pan-resistant
strains for the antibiotics tested. The predictions of
the rules-based and machine learning algorithms
for these isolates were compared to results of
phenotype-based diagnostics.8 The rules-based and
machine learning predictions achieved agreement
with standard-of-care phenotypic diagnostics of
89.0% and 90.3%, respectively, across 12 antibiotic
agents from six major antibiotic classes. Several
sources of disagreement between the algorithms
were identified. Novel variants of known resis-
tance factors and incomplete genome assembly
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confounded the rules-based algorithm, resulting in
predictions based on gene family rather than on
knowledge of the specific variant found. Low-
frequency resistance caused errors in the machine
learning algorithm because those genes were not
seen or seen infrequently in the test set. They
also identified an example of variability in the
phenotype-based results that led to disagreement
with both genotype-based methods.

PATRIC (Pathosystems Resource Integration
Center (patricbrc.org)) is a National Institutes of
Health–supported bioinformatics resource center
that was built to enable comparative genomic anal-
ysis of bacterial pathogens.69 The PATRIC file-
transfer protocol server enables access to genomes
that are binned by their AMR phenotypes, as
well as metadata including MICs. The custom-
built AdaBoost (adaptive boosting) machine learn-
ing classifiers can identify carbapenem resistance
in Acinetobacter baumannii, methicillin resistance
in S. aureus, and �-lactam and cotrimoxazole resis-
tance in Streptococcus pneumoniae with accuracies
ranging from 88% to 99%. AdaBoost can predict
isoniazid, kanamycin, ofloxacin, rifampicin, and
streptomycin resistance in M. tuberculosis, achiev-
ing accuracies ranging from 71% to 88%. This set of
classifiers has been used to provide an initial frame-
work for species-specific AMR and genomic fea-
ture prediction in the RAST and PATRIC annotation
services.70

The functional study of AMR

Understanding the mechanisms responsible for
AMR will continue to remain a central aspect of
AMR research. Like AMR prediction, this field also
benefits greatly from the most recent NGS tech-
nologies. For instance, a transposon-sequencing
(Tn-seq) methodology was used to screen large
numbers of transposon mutants in P. aeruginosa.71

This method was benchmarked with the iden-
tification of mutations reducing intrinsic resis-
tance to tobramycin, a phenotype that had been
previously analyzed at the genome scale using
mutant-by-mutant screening. The results show the
effectiveness of the Tn-seq method in defining the
genetic basis of a complex resistance trait in P.
aeruginosa. Harnessing evolutionary biology is also
a promising route out of AMR. Experimental evolu-
tion of P. aeruginosa in the presence of an antibiotic
monitored using WGS sequencing allows not only

the direct identification of the mutations that occur,
but also an investigation of the fitness cost associ-
ated with these mutations, which is likely to affect
their success in a host environment.72,73

Conclusions

The clinical and basic science literature suggest that
bacterial WGS can be successfully applied to rapid
diagnostics in infectious diseases and the prediction
of AMR. Predicting AMR may be useful for clinical
cases that fail or challenge the limits of traditional
laboratory testing. WGS analysis coupled with AMR
prediction could be particularly beneficial for slow-
growing SCVs of P. aeruginosa or for other difficult-
to-culture organisms and organisms that elude phe-
notypic testing altogether. As for species or strains
that grow normally and for which current labora-
tory methods are relatively efficient, we argue that
sequencing-based approaches offer the potential to
provide much more clinically relevant information
in a similar time-frame.

However, there are clear limitations in predicting
AMR without phenotypic confirmation; caution
needs to be taken in attributing relevance to any
genes hitherto not shown to confer drug resistance.
Four AMR postulates have been proposed, and an
AMR trait should be only described as such if the
criteria of these four postulates are met.74 These
include the following: (1) show that the genetic trait
is present in drug-resistant microbes; (2) demon-
strate that the genetic trait is not present or not
expressed in drug-susceptible strains; (3) replace
the genetic trait with wild-type DNA sequence and
show that it confers drug susceptibility; and (4)
introduce the genetic trait into a drug-susceptible
strain and show that it confers AMR. These postu-
lates are supported by the biology of AMR, where
we know the microbiological effects of sublethal
doses of antibiotics, including in P. aeruginosa;75 the
relative contribution of recombination and point
mutation to the diversification of P. aeruginosa
clones;76 the impact of AMR caused by gene
amplification and its implication on the evolution
of AMR;77 the ramifications of SNPs associated with
AMR;78 and the challenge of pinpointing which
MDR efflux pumps are involved in AMR. However,
one additional genomics approach to support AMR
prediction and its implementation could include
data on the transcriptome of AMR for the bacterial
species to be tested. In P. aeruginosa, RNA-Seq
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has defined a transcriptional landscape known to
be shaped by environmental heterogeneity and
genetic variation.79 In specific cases, such as in
P. aeruginosa CF lung infections, single–bacterial
cell genome sequencing could assist in predicting
AMR.80 Single-cell genomics and transcriptomics
are advancing rapidly and could interrogate AMR
through a novel, complimentary approach.

Although many potential impediments to the uti-
lization of NGS-based diagnostics and prediction of
AMR exist, it would be a loss to the medical commu-
nity if this technology could not be applied to predict
AMR and assist in patient care in some capacity. The
rapid evolution of NGS challenges both the regula-
tory framework and the development of laboratory
standards and will certainly contribute to further
research using P. aeruginosa and the IPCD toward
tangible improvement and progress.
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