
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1002/cnm.2903 

 
This article is protected by copyright. All rights reserved. 

A numerical investigation and experimental verification of size effects in loaded bovine 

cortical bone 

 

J.C. Frame1, M.A. Wheel2 & P.E. Riches1 

 
1Department of Biomedical Engineering 

University of Strathclyde 

Glasgow, G4 0NW, UK 

 
2Department of Mechanical and Aerospace Engineering 

University of Strathclyde 

Glasgow, G1 1XJ, UK 

 

marcus.wheel@strath.ac.uk 

Tel +44 141 548 3307 

Fax +44 141 552 5105 

 

Abstract 

 

In this paper we present two and three dimensional finite element based numerical models of 

loaded bovine cortical bone that explicitly incorporate the dominant microstructural feature: 

the vascular channel or Haversian canal system. The finite element models along with the 

representation of the microstructure within them are relatively simple: two dimensional 

models, consisting of a structured mesh of linear elastic planar elements punctuated by a 

periodic distribution of circular voids, are used to represent beam samples of cortical bone in 

which the channels are orientated perpendicular to the sample major axis, while three 

dimensional models, employing a corresponding mesh of equivalent solid elements, represent 

those samples in which the canals are aligned with the axis. However, these models are 

exploited in an entirely novel approach involving the representation of material samples of 

different sizes and surface morphology. The numerical results obtained for the virtual 

material samples when loaded in bending indicate that they exhibit size effects not forecast 

by either classical (Cauchy) or more generalized elasticity theories. However, these effects 

are qualitatively consistent with those that we observed in a series of carefully conducted 

experiments involving the flexural testing of bone samples of different sizes. Encouraged by 

this qualitative agreement we have identified appropriate model parameters, primarily void 

volume fraction but also void separation and matrix modulus by matching the computed size 

effects to those we observed experimentally. Interestingly, the parameter choices that provide 

the most suitable match of these effects broadly concur with those we actually observed in 

cortical bone. 
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1. Introduction 

 

Cortical bone is a heterogeneous material with fibrous, porous and particulate phases 

combining to form a complex hierarchical microstructure. The microstructure associated with 

porous features, such as vascular channels, may have contributing influences to the stress 

concentrations and stress shielding around implants [1, 2, 3], yet the importance of these 

channels in the mechanical behaviour of cortical bone is not well understood. The design and 

integration of an implant and understanding of the bone-prosthesis interface are important 

factors in prosthetic design [4, 5, 6, 7], but the interaction between prosthesis and cortical 

bone at a fundamental microstructural level is relatively poorly understood [8, 9, 10]. It is 

proposed that if one can characterise how the heterogeneity in the microstructure affects the 

macroscale stress, particularly periprosthetically, this may herald a greater potential for 

innovative, longer lasting prostheses designs. 

 

Heterogeneous materials may be modelled using multiscale modelling, which represents the 

global behaviour of a heterogeneous material by firstly developing a representative volume 

element (RVE) that incorporates microstructural detail at the scale of interest [11, 12, 13, 14, 

15, 16, 17]. After applying homogeneous boundary conditions the mechanical response of the 

RVE can then be used to identify the constitutive parameters in homogenised, Cauchy type 

continuum representations of the material. However, homogenization may result in the 

suppression of microstructure dependent mechanical behaviour such as the dependence of 

stiffness on size. This is usually of little consequence when the scale of the microstructure is 

small compared to the overall scale but when they are comparable then this may be more 

significant. Alternative, more generalized continuum theories therefore attempt to 

intrinsically embrace or incorporate such behaviour. One such theory, micropolar (or 

Cosserat) elasticity, incorporates an independent rotation as an additional degree of freedom 

along with additional constitutive constants [18, 19]. One such constant, the characteristic 

length, reflects the size scale associated with the underlying structure of a heterogeneous 

material [20, 21, 22, 23, 24, 25]. Furthermore, a size dependence of flexural stiffness or 

rigidity is explicitly forecast. 

 

Whilst the mechanical behaviour of homogeneous materials is size independent, this is not 

necessarily so, macroscopically, for heterogeneous materials. Size effects have been observed 

in polymeric foams [26, 27, 28], naturally occurring materials, notably cortical bone [29, 30], 

and materials consisting of arrays of periodic voids [23, 24, 25]. Generalized continuum 

theories like Cosserat (micropolar) elasticity predict a size effect in which flexural stiffness 

increases as the size of geometrically similar material samples  reduces, while uniaxial 

stiffness under uniform tensile or compressive loading remains size independent, as in the 

Cauchy case. In the case of slender rectangular beam samples loaded in three point bending, 
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micropolar elasticity theory predicts that the flexural stiffness, K, increases linearly with 

decreasing sample size as measured by the reciprocal of beam depth squared [23] according 

to:-. 
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where E* may be considered to be a flexural modulus, L is the supported sample span, b and 

d are the breadth and depth of the cross section, and lc is a characteristic length parameter 

thought to reflect the size scales associated with the underlying material microstructure. The 

conventional micropolar characteristic length in bending, 𝑙𝑏, is related to 𝑙𝑐, in (1) by 𝑙𝑏 =

𝑙𝑐 √24⁄  [23]. 

 

Experimentally, the flexural rigidity of cortical bone has been shown to increase with 

decreasing sample size [29] or conversely, decrease with reducing sample size [30]. Thus, 

contradictory observations of size effects have been reported previously in the literature. In 

the earlier work [29] sample size range was more limited than in the later work [30] which 

extended this range down to much smaller sizes where such effects may be more pronounced. 

However, in the later work the decrease in flexural stiffness with reducing sample size was 

interpreted in the framework of Cauchy elasticity, with the flexural modulus being identified 

as supposedly size dependent, rather than in the context of more generalized elasticity 

theories which incorporate a constant modulus and account for any size dependency through 

the additional length scale parameter. Surface influences, such as roughness or damage, have 

also been suggested as possible compromising factors in experimentally identifying size 

effects [28] but these have not been systematically investigated or related to the effects 

actually observed. An analytical attempt to explain the source of unanticipated size effects in 

heterogeneous materials including cortical bone has recently been provided using the 

analogue of a laminated beam comprised of alternating stiff and compliant layers [31].  

 

Resolving the previously reported contradictions is the primary motivation for the present 

work. This paper therefore addresses the fundamental question of whether bone may be 

considered a generalized continuum. Results from three-point bending experiments from 

mid-diaphyseal bovine femur cortical bone samples of varying size are compared to FE 

models of beam samples with transversely and axially aligned microstructural detail 

comprised of tubular channels and two distinct surface morphologies: one which is smooth 

and one in which the channels are evident on the surface. Both cases are investigated 

numerically since the morphology of the actual samples is unknown beforehand. In 

comparing numerical predictions and experimental results, not only do we derive the 

characteristic length of cortical bone in femoral longitudinal and radial directions, but we 

highlight the influence of surface morphology in characterising size-effect behaviour in 

heterogeneous materials more generally. 

 

2. Finite Element Representations of Cortical Bone 
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2.1 Material Representation 

 

We numerically investigate the mechanical behaviour of an idealised representation of 

cortical bone comprised of a solid matrix phase that is punctuated by unidirectional tubular 

voids of circular cross section, the centres of which are located on a regular, equilateral 

triangular array (Figure 1a). This particular arrangement enables the matrix to be represented 

straightforwardly by meshes that can be generated by replication of a unit cell comprised of a 

structured array of elements. While it would be possible to base mesh generation on images 

of actual cortical bone samples obtained by scanning, the more random distribution in both 

void diameter and location obtained from the images would necessitate the use of 

unstructured meshes which would in turn severely compromise computational efficiency. The 

tubular voids represent the aforementioned predominant porous microstructural feature, the 

vascular channel system. Other smaller scale features that comprise the complex 

microstructural hierarchy of cortical bone are not included in this idealised representation. 

This representation is thus distinctly different from other recent idealisations of bone which 

are typically assembled upwards from the smallest microstructural scale [32, 33]. The 

assumed unidirectional orientation of the voids is consistent with the channel alignment 

observed in the cortical bone layer of the mid diaphysis section of long bones such as the 

femur. The matrix material was assumed to be isotropic, although in reality the matrix is 

known to be anisotropic due to hydroxyapatite and collagen fibre orientations. This necessary 

assumption of matrix isotropy reduces modelling complexity by minimizing the number of 

constitutive parameters that need to be specified and will entirely attribute any observed 

anisotropy to void orientation rather than matrix anisotropy. 

 

2.2 Two Dimensional Finite Element Models of Virtual Samples of Idealised Material with 

Transversely Orientated Voids 

 

The geometry of the representative material is described by the void radius, VR, and the 

separations of the void centres in the x and y directions, Sx and Sy, respectively, noting 

Sy=√3Sx/2 (Figure 1b). The void volume fraction, Vf, is readily derived. Initially the 

separation, SX, was nominally prescribed as 1.0 mm and since the matrix material was 

assumed to be isotropic it was defined by just its Young’s modulus and Poisson’s ratio of 20 

GPa and 0.3 respectively [34, 35, 36].  

 

Two dimensional finite element meshes were used to represent beam like test samples of the 

representative material in which the channels were orientated transverse to both the sample 

major and minor axes. To generate these meshes two different unit cells were first created 

(Figures 2a, and 2b). Linear elastic, eight noded quadratic quadrilateral elements were used in 

generating the unit cells. The unit cells were then regenerated at periodic spatial increments 

to create entire virtual beam samples of four different sizes (Figures 2c and 2d) and two 

surface morphology variants (Figures 2c and 2d). Sample size was determined by the number 

of rows of voids across the section which varied from one to four. Initially, virtual samples of 

three different void fractions varying from around 3% to over 30%, thereby covering the 
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entire range likely  to be seen in cortical bone [37, 38, 39, 40], were generated by prescribing 

VR as appropriate. These samples were then suitably constrained and loaded in uniform 

uniaxial compression along the sample major axis. The effective Young’s modulus was 

determined from the ratio of the applied compressive stress to the global strain. Equivalent 

samples were then created by interchanging SX and SY and similarly loaded to assess the level 

of planar anisotropy exhibited by the representative material.  

 

Further virtual beams of five different volume fractions, the three values considered 

previously together with two further intermediate values, were then generated in two different 

length to depth (L/d) aspect ratios: 10.4:1 and 20.8:1, at each of the four sizes and both 

surface morphologies. These were all loaded in 3 point bending to identify any size effects in 

their flexural stiffness and the possible dependence of these effects on surface morphology. 

The vertical displacement at a point near one end of the lower surface was constrained and a 

point load applied at the intersection of the upper surface and the sample central symmetry 

plane forming the other end of the mesh (Figure 2c and 2d). Both the constraint and load 

were carefully positioned between neighbouring voids to minimize any localized deformation 

that might be incurred in placing them directly adjacent to particular voids. The horizontal 

displacements of all nodes on the symmetry plane were also constrained (Figure 2c and 2d). 

Beam flexural stiffness was determined by dividing twice the applied point load by the 

average vertical displacement of all nodes located on the symmetry plane. Satisfactory 

convergence of the average vertical displacement was achieved for all void volume fractions 

investigated using just four or five element divisions between the void surface and unit cell 

boundary as illustrated in Figures 2(a) and (b). 

 

2.3 Three Dimensional Finite Element Models of Virtual Samples of Idealised Material with 

Axially Aligned Voids 

 

Representation of beam samples of the idealized material in which the voids were aligned 

parallel to the major axis rather than transverse to it necessitated the use of three dimensional 

FE meshes. These meshes were generated by firstly repeatedly replicating the unit cell 

meshes (figures 2a and 2b) to provide a two dimensional mesh representing the cross section 

of the virtual sample (figures 3a and 3c) and then extruding these 2D meshes in the direction 

of the sample major axis until the sample length was realised (Figures 3b and 3d). Higher 

order hexahedral elements with 20 nodes were used to represent the idealised material matrix 

which due to the assumption of isotropy, was assigned the previously prescribed properties. 

The axial dimension of the elements was selected to ensure that the aspect ratio of any 

individual element did not exceed 3. This procedure was used to generate FE meshes of 

virtual samples of varying sizes, surface morphology (figures 3b and 3d) and void volume 

fraction matching those of the corresponding 2D samples. These meshes were firstly loaded 

uniaxially, parallel to the channels, and subsequently in three point bending. Symmetries 

about the vertical plane corresponding to the mid length cross section and the perpendicular, 

axially aligned vertical plane(figures 3a and 3c) were exploited in both loading cases through 

the application of suitable displacement constraints to minimize overall computational effort. 

The modulus in the major axis direction was again determined from the axial load and the 
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resulting axial extension while the flexural stiffness was found from the centrally applied 

load and the average displacement of all nodes on the mid length cross section in the 

direction of this load. As was found with the two dimensional models, converged solutions 

for this average displacement and thus for the flexural stiffness were obtained using just four 

or five element divisions between the void surface and the boundary of the unit cell (figures 

3b and 3d). 

 

3. Experimental Testing of Bovine Cortical Bone 

 

Experimental 3-point bending tests on cortical bone specimens were performed concurrently 

with the numerical modelling. Extensive literature on the compressive strength of cortical 

bone currently exists for comparison with the axial numerical results, however to provide a 

direct comparison with the numerical bending simulations 3-point bending experiments were 

required to provide the necessary insight into microstructural size effects. Five bovine femurs 

were first obtained from a local abattoir and frozen at -20 °C until required. The mid-

diaphysis section was used for extracting samples as this is the region of long bones with both 

the highest degree of heterogeneity [41, 42, 43] and vascular channel alignment. From each 

femur two specimens were produced: one with its major axis oriented longitudinally along 

the long axis of the femur, so that the channels would primarily align with the specimen 

major axis, and the other with this axis oriented transversely across the radial-circumferential 

plane so that the vascular channels would predominantly run across the specimen breadth. 

This produced a total of five specimens for each channel orientation. Each specimen was 

prepared to an initial length of 20 mm, breadth of 5 mm and depth of 1.3 mm using a 

diamond bladed sectioning saw (Smart Cut 6001, UKAM, USA). This initial sample depth 

was selected on the basis of previous work [30] which indicated that the reliable 

identification of size effects required samples of this scale and below. After cutting the 

samples were meticulously polished with increasingly fine grades (200, 500, 1200 and 2500 

grade) of silicon carbide paper and stored in phosphate buffered saline (PBS) solution in a 

tissue refrigerator at 3°C for up to 48 hours. 

Samples were loaded in 3-point bending, in a 37°C 0.9M PBS bath with a 450N load cell 

(BOSE Electroforce 3200, U.S.). The span of the 3-point-bending supports was set to give a 

10:1 aspect ratio (length:depth) when loading each specimen. This aspect ratio was deemed 

sufficiently large enough to satisfy the slender beam assumption implicit in deriving equation 

1 while simultaneously avoiding the need to produce excessively slender specimens. Each 

specimen was ramp loaded to a surface strain of 0.005 at a strain rate of 0.0025s-1 and held 

for 10 seconds before being unloaded to zero displacement. The surface strain and strain rate 

were chosen to preclude the possibility of inducing surface microdamage [44, 45]. 

Furthermore, after first loading, each sample was then immediately re-orientated to swap the 

compressive and tensile surfaces in bending and the loading repeated. Each specimen was 

loaded three times in total. The flexural stiffness of each specimen was derived by applying a 

linear fit to the loading portion of the measured load displacement relationship. 
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The depth of each sample was then reduced from 1.3 mm to 1.0 mm then subsequently to 0.7 

mm and finally to 0.5mm, this being achieved by polishing under PBS solution irrigation 

using increasingly fine silicon carbide paper (up to 2500 grade) to within 0.05 mm of the 

desired dimension. The specimens were then stored in PBS solution at 3 °C for less than a 

day prior to testing. Samples were loaded according to the aforementioned procedure after 

each reduction in depth. The span of the 3-point-bending support jig was adjusted to maintain 

a constant 10:1 sample aspect ratio at each depth tested.  

 

After testing at each depth, a portion was cut from the end of each sample for surface 

roughness, volumetric density and mineral content measurement purposes as well as surface 

imaging. Surface analysis was conducted using an Alicona non-contacting roughness 

measuring machine to obtain Ra data. Wet weight and density were determined by measuring 

samples’ volumes and weights with a micrometer and a balance respectively. All specimens 

were then dried at 100 °C for 24 hours and then reweighed to give the dry weight and density. 

Each specimen was finally ashed at 800°C for 24 hours and reweighed to determine the ash 

weight and thereby the mineral and organic contents. Surface images were obtained using an 

optical microscope  

 

4. Results 

 

4.1 Uniaxial Loading of Idealised Material Virtual Samples 

 

Effective Young’s modulus decreased with increasing void fraction for both the 2D and 3D 

virtual samples (Table 1). However, for the 2D samples the effective moduli in both loading 

directions remained similar at any given Vf indicating that the idealised material exhibits 

approximate planar isotropy across the range of void volume fractions considered. When the 

void volume fraction is in the region of0.145 the effective modulus is similar to published 

values for the radial and circumferential directions in cortical bone [41, 46, 47]. For 3D 

models, at any given void volume fraction the effective modulus in the sample axial 

direction, in which the channels are aligned, is greater than both of the moduli in the two 

orthogonal directions located in the plane of the cross section, these being approximately the 

same as previously and, moreover, equal to their 2D counterparts. Thus the full three 

dimensional representation of cortical bone (figure 1) appears to display transverse isotropy. 

Effective Young’s moduli were practically independent of sample size, as forecast by both 

Cauchy elasticity theory and by more generalized continuum theories. 

 

4.2 Three Point Bending of Idealised Material Virtual Samples 

 

For virtual samples with transversely oriented voids and those with axially aligned channels   

an increase in void volume fraction is accompanied by a reduction in stiffness when top and 

bottom surfaces are straight and smooth (Figures 4a and 4b). Also, at a given void volume 

fraction the stiffness of the perforated material increases with reducing sample depth, as 

predicted by micropolar elasticity theory. Furthermore, the magnitude of size effect, as 

measured by the gradient of the linear stiffness variation, becomes more marked as the void 
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volume fraction is increased. In contrast however, when the material surface morphology is 

changed due to intersection with the array of voids, stiffness decreases as sample size reduced 

(Figures 4c and 4d); behaviour that is not forecast by either Cauchy elasticity or more 

generalized continuum theories. If these stiffness variations are extrapolated back to the 

stiffness axis (i.e. d tends to infinity) then the intercept for any given void volume fraction 

matches that obtained from figures 4a and b. Interestingly, the gradients of the size effects in 

the smooth-surface and void-intersected surface cases are very similar in magnitude although 

of opposite sign (Figure 4e and f). In addition, at the lower aspect ratio of 10.4:1, the samples 

exhibit a similar linear variation in stiffness with size to the more slender 20:8:1 beams and 

thus yield, from equation 1, the same characteristic length values at a given Vf (Table 2). 

Therefore, the fact that the stiffness variation seen at the lower aspect ratio remains linear and 

also provides consistent characteristic length data implies that the slenderness of the samples 

is sufficient to concur with the behaviour anticipated of a slender micropolar beam. This 

vindicates the adoption of the more practicable 10:1 sample aspect ratio in the experimental 

three-point bend tests. 

 

4.3 Experimental Three Point Bending 

 

There was no statistically significant correlation (Pearson’s) of mineral content (p = 0.108) or 

surface roughness (p = 0.725) with sample size, negating potential confounding factors of 

stiffness [28, 48, 49, 50, 51]. Specimens with axially aligned channels become significantly 

more compliant as their size is reduced (Figure 5, repeated measures ANOVA, p < 0.001) 

contradicting predictions of both Cauchy and generalized elasticity theories. However, there 

is a convincing correspondence between the size effect seen previously for human cortical 

bone [30] and that seen now for its bovine counterpart providing confidence that the size 

effect is a genuine feature of the material behaviour (Figure 5). Optical imaging of the 

specimen surfaces reveals that the channels are partially exposed and aligned along the 

sample major axis (figure 6). Specimens with transversely oriented voids behave similarly to 

those that are axially perforated. However, for a given specimen depth, the stiffness of the 

former is less than that of the latter and, secondly, the size effect, although evident, is less 

pronounced (figure 7). 

 

5. Discussion 

 

Since the size effects of smooth-surfaced FE models (figures 4a and 4b) show the variation in 

flexural stiffness with sample size, anticipated by equation 1, the flexural modulus and 

characteristic length may be derived from the intercept and gradient respectively for both the 

two dimensional virtual samples (Table 2) and their three dimensional equivalents (Table 3). 

For each void volume fraction considered in table 2, the derived values of the flexural 

modulus agree with the moduli quoted in table 1 for uniform uniaxial loading. Thus the 

assumptions regarding the flexural mode of deformation, implicit in equation 1 and hence in 

obtaining these data are apparently valid. However, the flexural modulus values for the three 

dimensional material are not the same as those of its two dimensional counterpart, 
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highlighting the genuinely anisotropic nature of the  material illustrated in figure 1 and thus 

its suitability as an idealised representation of cortical bone. 

 

The flexural modulus and characteristic length data given in tables 2 and 3 are relatively 

insensitive to the sample aspect ratio thus further vindicating the decision to perform the 

experimental flexural tests on cortical bone samples with an aspect ratio of only 10:1. 

Characteristic length values increase linearly with void diameter, confirming recent 

theoretical forecasts [52]; the constants of proportionality being 1.4 for the 2D material and 

0.8 for the 3D material, emphasizing the anisotropy displayed by the representative material. 

 

When the surface was intersected with voids, stiffness decreased with decreasing size, 

behaviour predicted by neither Cauchy elasticity nor generalized continuum theories. 

Nevertheless, it has recently been demonstrated that a simple heterogeneous material 

comprised of alternating stiff and compliant laminae can exhibit size effects that are 

consistent with those forecast by generalized elasticity theories [31]. The behaviour of the 

simple laminated material is consistent with that of a Cosserat-type material when the surface 

layers are comprised of the stiffer of the two constituents but when the more compliant 

material forms the surfaces the material exhibits decreasing stiffness with reducing beam 

depth. Thus we may infer that such anti-Cosserat behaviour, namely decreasing stiffness with 

reducing beam depth, is associated with a reduced stiffness of the surface layers. The partial 

exposure of the vascular channel system, clearly evident in a magnified image of a typical 

test specimen surface (Figure 6), and the associated increase in compliance of the adjacent 

material over that of the bulk may be considered to be the primary source of the negative size 

effect identified in bovine cortical bone. 

 

Figures 4e and 4f propose that, for any given void volume fraction, the gradients of the two 

possible size effects for smooth and non-smooth surfaces are essentially the negative of each 

other. Whilst this observation is empirical in nature and, to date, without theoretical support, 

it does offer a pragmatic solution to the problem of determining the constitutive properties of 

materials that exhibit the kinds of size effects seen in figures 4c, 4d and indeed Figure 5. 

Utilising this argument, both modulus and characteristic length data may be derived for 

bovine cortical bone from the observed size effects (Table 4).  

 

While the qualitative similarity between the numerically forecast and experimentally 

observed size effects is evident, the former were predicated on generating the finite element 

representations of the idealised material using a presumed unit cell spacing of 1 mm. To 

facilitate more direct quantitative comparison between the numerical and experimental results 

it was necessary to rescale the cell spacing used in generating the finite element meshes. Thus 

SX was reset to 500 μm with SY being scaled accordingly. This value was selected on the 

basis that it not only reflects the upper bound of channel separation typically observed in 

bovine cortical bone but would also enable the generation of finite element models with 

dimensions, notably the virtual sample depth, that, while not identical to those of the 

experimentally tested specimens, were very similar. Since in the experimental test specimens 

the vascular channel system is clearly exposed (figure 6) only those models where the 
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channels were intersecting the sample surfaces, in the manner of figures 2d and 3d, were 

regenerated but now at void volume fractions ranging from of 0.009 through 0.036, 0.082, 

0.145, 0.227 to 0.326. The Young’s modulus of the material matrix within the models was 

however retained at 20 GPa as previously. The best match between numerical and 

experimental results was established by firstly determining the difference, in a least squares 

sense, between the measured stiffness variation and that forecast at each of the chosen void 

volume fractions and then identifying the minimum difference. Independent comparisons of 

results were made for the axially and transversely aligned void cases. 

 

Intriguingly, the best match (Figure 7) occurred at the same volume fraction in both the 

transversely and axially aligned cases and, moreover, it is encouraging to note that the void 

volume fraction of 14.5% that provides this match is on the upper end of the range of 

typically observed values of porosity in cortical bone (5-15%) [36, 37, 38, 39, 40]. Defining 

the totality of material anisotropy as being expressed by the vascular channel network is an 

assumption in the numerical simulations that does not account for matrix material anisotropy 

as has been observed in cortical bone [53, 54]. It is nevertheless worth noting that the 

simplifications in the numerical model are intended to be a generalisation of the entire 

material anisotropy. Furthermore, the consequences of assuming matrix material isotropy 

may contribute to the high porosity observed when fitting experimental and numerical results 

because larger vascular channels will be required in order to accommodate for all of the 

material anisotropy. Additionally, the experimentally observed Young’s modulus values 

(Table 4) indicate that the recorded modulus is lower than those observed in previous bovine 

experiments (20 GPa) which may be indicative of a higher porosity in the experimental 

specimens.  It is particularly interesting to note that the characteristic length values (Table 4) 

are of similar dimensions to the sizes reported for vascular channels and Haversian canals in 

primary and secondary osteons respectively [55, 56, 57]. However, these characteristic length 

values are somewhat tentative since they are derived by equating the computed or observed 

negative size effects to their positive equivalents (figures 4e and 4f) to enable their 

calculation using equation 1. Nevertheless, it is reassuring to note that despite the simplicity 

of the representative material, both the modulus and characteristic length data derived 

computationally reflect the experimentally determined values (Table 4), endorsing the 

material as a valid representation for identifying the global mechanical behaviour of cortical 

bone which, as the experimental results clearly identify, is evidently non classical. A better 

match may be realised by optimising the values for Young’s modulus and void fraction 

simultaneously. 

 

The work presented here indicates that in circumstances where the microstructural length 

scale becomes significantly large relative to the surrounding geometrical features then the 

assumption of Cauchy elasticity will no longer provide an accurate prediction of stress locally 

within the material. This is of particular importance when considering the bone-implant 

interface where localised stresses may result in loosening and improper osseointegration. The 

idealised nature of the numerical model used in this study has been based upon several 

assumptions, principally: that the matrix material is isotropic and the global material 

anisotropy is generated solely from the vascular channel network; and that the vascular 
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channels are aligned longitudinally along the long axis of cortical bone. Including a degree of 

anisotropy into the matrix material would lend more microstructural detail of smaller length 

scales to the model whilst allowing a more accurate comparison between the experimentally 

observed characteristic lengths and the vascular channels. Similarly, the alignment of 

vascular channels and Haversian canals is known to be more isotropic at the epiphysis 

regions of long bones, therefore the greatest degree of anisotropy and thus similarity between 

the numerical model and cortical bone behaviour will be observed at primarily the diaphyseal 

regions of long bones. 

 

6. Conclusions 

 

Finite element modelling of a virtual material comprised of a regular array of tubular voids in 

an otherwise classically elastic matrix has exhibited size dependent behaviour that is 

consistent with that of generalized continua of the Cosserat type and with that observed in 

experimental tests on cortical bone samples. The nature of the size effect is intimately related 

to the character of the material sample surfaces. Furthermore, it is extremely encouraging to 

note that the finite element models are capable of quantitatively reproducing the 

experimentally observed behaviour when the key input parameters, namely the void spacing, 

the void volume fraction and the matrix modulus, reflect those typically encountered in 

cortical bone. Finally, the characteristic length data, for which there is little to compare 

against in the existing literature, appear to reflect the length scales associated with the major 

microstructural feature present in cortical bone: the vascular channel. 
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 Void Volume Fraction, VF  

 0.036 0.145 0.326 

 EX 

(GPa) 

EY 

(GPa) 

Ez 

(GPa) 

EX 

(GPa) 

EY 

(GPa) 

Ez 

(GPa) 

EX 

(GPa) 

EY 

(GPa) 

Ez 

(GPa) 

2D 17.94 17.94 - 13.20 13.11 - 7.94 7.63 - 

3D 17.94 17.94 19.3 13.20 13.11 17.1 7.94 7.63 13.5 

 

Table 1 Young’s moduli for different void volume fractions for the 2D and 3D material 

specifications 
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Void 

Diameter, 

Vd (mm) 

Void 

Fraction 

Vf 

Normalised 

void radius 

VR/SY 

Flexural Modulus 

(GPa) 

Characteristic length, lc 

(mm) 

10.4:1 

aspect 

ratio 

20.8:1 

aspect 

ratio 

10.4:1 

aspect ratio 

20.8:1 

aspect ratio 

0.2 0.036 0.16 17.47 17.87 0.28 0.28 

0.3 0.082 0.23 15.37 15.71 0.42 0.43 

0.4 0.145 0.31 12.90 13.16 0.55 0.57 

0.5 0.227 0.39 10.31 10.50 0.66 0.70 

0.6 0.326 0.46 7.74 7.83 0.75 0.82 

 

Table 2 Comparison of the flexural moduli and characteristic lengths for different void radii 

at 10.4:1 and 20.8:1 length to depth aspect ratios for the two dimensional material with SX of 

1.0mm, SY of 0.866mm, and matrix modulus of 20GPa. 
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Void 

Diameter, 

Vd (mm) 

Void 

Fraction 

Vf 

Normalised 

void radius 

VR/SY 

Flexural Modulus 

(GPa) 

Characteristic length, lc 

(mm) 

10:1 

aspect 

ratio 

20:1 

aspect 

ratio 

10:1 aspect 

ratio 

20:1 aspect 

ratio 

0.1 0.009 0.07 19.1 19.7 0.07 0.08 

0.2 0.036 0.16 18.6 19.1 0.16 0.16 

0.3 0.082 0.23 17.7 18.2 0.23 0.24 

0.4 0.145 0.31 16.4 17.0 0.31 0.32 

0.5 0.227 0.39 14.8 15.3 0.39 0.40 

0.6 0.326 0.46 12.8 13.3 0.46 0.48 

 

Table 3 Comparison of the flexural moduli and characteristic lengths for different void radii 

at 10:1 and 20:1 length to depth aspect ratios for the three dimensional material with SX of 

1.0mm, SY of 0.866mm, and matrix modulus of 20GPa. 
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 Em axial lb axial Em transverse lb transverse 

 

Experimental 
17.9GPa 57 μm 8.6GPa 44 μm 

FE 16.4GPa 35 μm 8.4GPa 58 μm 

 

Table 4 A comparison between the values of flexural modulus and characteristic length in 

bending, lb, for the specimens with axial and transversely orientated voids derived from 

experimentally measured size effects and those computed with a void fraction of 0.145, SX of 

0.5mm, SY of 0.433mm, and matrix modulus of 20GPa. 
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Figure 1 – (a) Idealized representation of cortical bone with (b) geometric parameters 

indicated. 
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Figure 2 (a,b) Structured meshes of planar quadrilateral elements used to represent region 

around particular void in the idealized material with (c) smooth surfaces and (d) surface with 

voids 
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Figure 3 Beam samples with axially aligned voids represented by three dimensional finite 

element meshes. 
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Figure 4 Variation in flexural stiffness with sample size measure, (1/d2), for (a, b) smooth 

surfaced beams with length to depth aspect ratio of 10.4:1; (c, d) perforated surface beams 

with a length to depth aspect ratio of 10.4:1; (e, f) variation in the gradient of the size effect 

in smooth and perforated surface samples. 

Transversely aligned voids (a, c, e); axially aligned channels (b, d, f) 
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Figure 5 Comparison of size effect seen in bovine cortical bone samples (diamonds) with that 

seen previously in human cortical bone samples (squares) [30]. 
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Figure 6 –Surface image of typical flexural test specimen. Partially exposed vascular 

channels associated with primary and secondary osteons can be seen to be aligned along the 

major axis of the specimen (white arrow). 
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Figure 7 Comparison of the experimental determined stiffness variation with the FE results 

obtained at a void volume fraction of 0.145 for both channel orientation cases. 
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