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Abstract— Transformers are critical assets for the reliable 

and cost-effective operation of the power grid. Transformers may 

fail if condition monitoring does not identify degraded conditions 

in time. Dissolved Gas Analysis (DGA) focuses on the 

examination of the dissolved gasses in the transformer oil and 

there exist different methods for transformer fault diagnosis 

based on different analyses of the gassing levels. However, these 

methods can give conflicting results, and it is not always clear 

which model is most accurate in a given situation. This paper 

presents a novel evidence combination framework for DGA 

based on Bayesian networks. Bayesian network models embed 

expert knowledge along with learned data patterns and evidence 

combination which aids in the consistency of analysis. The 

effectiveness of the proposed framework is validated using the 

IEC TC 10 dataset with a maximum diagnosis accuracy of 

88.3%. 
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I. INTRODUCTION 

Dissolved Gas Analysis (DGA) is a very common method 
of assessing the health of transformers. There are a number of 
standard diagnostic techniques which are used to determine the 
type of problem causing gassing within the transformer, such 
as Duval's Triangle [1], Rogers' ratio [2], and Doernenburg's 
ratio [3]. When these techniques reach the same conclusion 
about the type of fault present, this can give increased 
confidence in the veracity of the diagnosis. However, in those 
cases where there is a disagreement between techniques, it is 
not always clear how to reach an appropriate conclusion. 

Within the literature, there have been various approaches to 
solving this problem. The logic-based Evidential Reasoning 
technique has been shown to perform well for given case 
studies [4], and Dempster-Shafer Theory has been shown to 
give good accuracy on a larger database of samples [5]. 
However, a significant portion of DGA samples may be 
considered relatively easy to diagnose, since the techniques are 
in broad agreement. The accuracy of an evidence combination 
technique on a database of largely straightforward cases is not 
necessarily informative about the technique's applicability in 
the field. It is the performance of an evidence combination 
technique on cases where there is conflict in diagnosis that is 
crucial for the adoption of such a method by the industry. 

This paper presents a Bayesian network framework for 

evidence combination which is particularly suited to combining 

the results of DGA diagnostic methods. 

II. RATIO-BASED DGA METHODS 

Ratio-based DGA methods classify transformer faults 

through predefined gas ratio values. Table I shows 

Doernenburg’s classification ratio values [3], where 

R1=CH4/H2, R2=C2H2/C2H4, R3=C2H2/CH4 and R4=C2H6/C2H2. 

TABLE I.  DOERNENBURG’S CLASSIFICATION RATIOS [3] 

R1 R2 R3 R4 Diagnosis 

>1 <0.75 <0.3 >0.4 Thermal 

<0.1 N/A <0.3 >0.4 PD 

0.1-1 >0.75 >0.3 <0.4 Arcing 

 

Duval’s triangle evaluates the relative amount of three 

gasses (C2H2, CH4, C2H4) and classifies them within the 

coordinates of a triangle [1]. These coordinates define an area 

which can be transformed into a numerical classification 

method as displayed in Table II [6]. 

TABLE II.  DUVAL’S CLASSIFICATION GASES [6] 

C2H2% CH4% C2H4% Diagnosis 

0-0.02 0.98-1 0-0.02 PD 

0-0.04 
0.46-0.8 0.2-0.5 Thermal 300°C<T<700°C 

0.76-0.98 0.02-0.2 Thermal T<300°C 

0-0.15 0-0.5 0.5-1 Thermal T>700°C 

0.04-0.13 0.47-0.96 0-0.4 

Mixture of thermal and electrical faults 0.13-0.29 0.21-0.56 0.4-0.5 

0.15-0.29 0-0.35 0.5-0.85 

0.13-0.29 0.31-0.64 0.23-0.4 High energy discharge (Arcing) 

0.29-0.77 0-0.48 0.23-0.71 Low energy discharge (Arcing) 

 
Table III displays Rogers’ ratios (R1=CH4/H2, 

R2=C2H2/C2H4, R5=C2H4/C2H6) as proposed in [2].  

The fault types diagnosed by each method are different. In 
this work all diagnoses are classified into four groups: 
Thermal, Arcing (including high energy discharges), partial 
discharge (PD), and Normal degradation. These methods also 
assign a diagnosis with full confidence, regardless of proximity 
to a diagnostic boundary, and this may lead to conflicting 
situations. The proposed probabilistic diagnosis framework 
addresses this issue effectively through Bayesian networks. 



TABLE III.  ROGERS’ CLASSIFICATION VALUES [2] 

R1 R2 R5 Diagnosis 

>0.1-1 <0.1 <1 Normal degradation 

<0.1 <0.1 <1 PD 

0.1-1 0.1-3 >3 Arcing 

>0.1-1 <0.1 1-3 Low temperature thermal 

>1 <0.1 1-3 Thermal <700°C 

>1 <0.1 >3 Thermal >700°C 

III. BASICS OF BAYESIAN NETWORKS 

Bayesian networks (BN) use stochastic graphical models to 
represent dependencies among random variables [7]. These 
models are known as directed acyclic graphs (DAG). The 
structure of the BN model is interpretable such that each state 
can be mapped to the health condition of the modelled system. 
Let us assume that the DAG is comprised of p random 
variables, denoted X={X1=x1,…,Xp=xp}, which are linked 
through edges to reflect dependencies (see Fig. 1). In BN 
terminology a node x1 is said to be a parent of another node x2 
if there exists an edge from x1 to x2, and x2 is a child of x1. 

 
Fig. 1. Bayesian network example. 

 

Statistically, dependencies are quantified through 
conditional probabilities. Bayes’ theory states that the posterior 
probability, P(x2|x1), can be estimated by multiplying the 
likelihood, P(x1|x2), and the prior probability, P(x2), and 
normalizing with the probability of evidence, P(x1) [7]: 

(1)              )(/)()|()|( 122112 xPxPxxPxxP   

Bayesian networks are a compact representation of joint 
probability distributions [7]. In probability theory, the chain 
rule permits the calculation of any member of the joint 
distribution of a set of random variables using conditional 
probabilities [7]. Accordingly the joint distribution of the set of 
random variables X={X1=x1,…,Xp=xp} is defined as follows: 
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Using the information encoded in the DAG, (2) can be 
simplified to account only for parent nodes. Namely, if X is 
comprised of discrete random variables (assumed throughout 
the paper), the joint probability density function (the global 
distribution) is represented as a product of conditional 
probability distributions (the local distributions associated with 
each variable xi   X, 1<i<p) [7]: 
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where xpa(i) is the set of parents of xi and P(xi|xpa(i)) is the 
conditional probability distribution containing one distribution 
for each variable. 

The strength of relations among dependent nodes are 
synthesized through conditional probability tables (CPT). CPTs 
are defined for each node xi   X of the BN model expressing 
the conditional probability distributions (CPDs) for all the 
parent nodes xpa(i). If the nodes are discrete random variables, 
the CPD can be expressed as a multinomial distribution [7]. If 
a node does not have parents it will have a marginal probability 
table (e.g., node x1 in Fig. 1). If a node does have parents, each 
cell of the CPT will specify the conditional probability for the 
node being in a specific state given a specific configuration of 
the states of its parent nodes (nodes x2 and x3 in Fig. 1). 

A BN model is completely defined with the DAG and the 
conditional probabilities between the nodes, i.e. BN=(DAG, θ), 
where θ denotes the parameters of the CPT. The process of 
estimating the conditional probabilities between nodes is called 
parameter learning and the process of estimating the posterior 
distributions (i.e. diagnosis in the presence of specific data) is 
called probabilistic inference. 

CPT values can be estimated via parameter estimation 
methods. This paper focuses on maximum likelihood 
estimation (MLE) which maximizes the likelihood of making 
the observations given the parameters. Given a training dataset 
D={D1,…,D|train|}, first it is necessary to estimate the likelihood L 
that the dataset was generated by the model  BN=(DAG , θ), and 

then find the maximum likelihood estimator, ̂ : 
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After determining the structure of the BN and learning the 

parameters, the BN model can be used to make inferences. The 
goal of this work is to perform diagnosis or causal analysis, 
reasoning from effects (measured DGA values) to causes 
(transformer faults). That is, measured gas values are given as 
evidence to the Bayesian network model and through the DAG 
structure the posterior probability of possible causes is 
evaluated, P(fault | gas data). The posterior probability of each 
node enables inferences about the status of unobserved 
parameters and the most likely status for the node.  

IV. EVIDENCE COMBINATION THROUGH  

BAYESIAN NETWORKS 

Fig. 2 shows the proposed evidence combination 
framework based on BN models created using Rogers’ ratios, 
Doernenburg’s ratios, and Duval’s gases. The proposed 
approach is divided into cross-validation, data pre-processing, 
learning, inference and evidence combination stages.  

The goal of the cross-validation stage is to validate the 
results and assess how they will generalize to an independent 
dataset. To this end, Monte Carlo cross-validations are 
implemented as follows [8]: (i) initialize the trial counter, 
trials=0; (ii) randomly shuffle the dataset and execute 
preprocessing, learning, inference, and evidence combination 
steps, and store the results; (iii) if trials<Max_trials iterate 
from the previous step and increase the trial counter by 1; (iv) 
otherwise extract mean and standard deviation values of the 
stored diagnosis results. For each trial, the random shuffle and 
the train/test steps generate different training and testing 
datasets, and therefore, this process evaluates the framework 



with Max_trials different training and testing datasets 
(Max_trials=103). As a result this process generates repeatable 
and consistent diagnosis results. 

 

 

Fig. 2. Proposed Bayesian evidence combination framework. 

The data preprocessing stage starts by applying a log-scale 
step because diagnostic information does not reside in absolute 
gas values but instead in the order of magnitude [9]. Firstly the 
logarithm of every gas sample in the dataset is taken and then 
each variable in the dataset is scaled to mean zero and standard 
deviation one. This is done for each gas within the dataset, by 
subtracting the mean value and dividing by the standard 
deviation, for each sample of the variable. 

Then a discretization step is applied particular to each 
specific ratio-based DGA method (Fig. 2). Table IV shows an 
example for the Doernenburg case according to the ratio values 
in Table I. The same discretization procedure is applied to the 
ratios defined in Tables II and III. The coding for the occurrence 
of failure modes is specified with binary coding (e.g. PD fault: 
PD=1, Arc=0, Thermal=0, Normal=0). Subsequently, the 
discretized dataset is divided into train and test datasets using 
80% and 20% of the randomly shuffled dataset, respectively. 

TABLE IV.  DOERNENBURG’S CODING VALUES 

Ratio R1 R2 R3 R4 

Code 0 1 2 0 1 0 1 0 1 

Range ≤0.1 0.1-1 >1 ≤0.75 >0.75 ≤0.3 >0.3 ≤0.4 >0.4 

A. Parameter Learning and Inference through BN 

The DGA diagnosis through BN starts by designing the BN. 
To this end, expert knowledge is elicited from industry 
standards [3]. For instance, in the Doernenburg case (Table I) 
the Thermal fault depends on R1, R2, R3, and R4, whereas the 
PD fault depends only on R1, R3, and R4. Although the 

classification ratios in Table I do not include Normal 
degradation values, when designing the BN model it is 
assumed that the Normal condition is indicated by the 
remainder values of all the ratios (i.e. when there is no 
diagnosis of Thermal, Arc, or PD). This allows the model to be 
trained for normal degradation data. Fig. 3 shows the BN 
model for Doernenburg’s ratios. 

 
Fig. 3. Doernenburg’s Bayesian network. 

 

The same process is applied to extract BN models for 
Duval and Rogers’ ratios. After designing the BN model, the 
next step is the implementation of the parameter learning 
through MLE using the training dataset. This step quantifies the 
CPT and Table V shows the CPT for a specific configuration 
of the Doernenburg BN model. When there is a Thermal fault, 
the value of R1 is likely (88%) to be in the range determined by 
the discretized number 2 (R1>1, see Table IV). This value 
matches with the Thermal fault displayed in Table I. This node 
supplies one piece of probabilistic evidence for diagnosis. By 
utilizing the evidence from all nodes for a given sample, all the 
possible failure types can be evaluated probabilistically. 

TABLE V.  SUBSET OF THE CPT LEARNED FROM DATA 

R1 PD=0, Arc=0, Thermal=1, Normal=0 

0 0.04 

1 0.08 

2 0.88 

 

The next step is the inference which quantifies posterior 
probabilities through the logic sampling (LS) algorithm [7]. 
Given the test data and the BN model, LS infers the probability 
of each fault, P(fault | gas data). The fault with the highest 
likelihood is the final diagnosis of the model. The probabilistic 
diagnosis framework generates more information about the 
strength of belief in a given diagnosis compared with the ratio 
technique, and this is combined into the overall decision. The 
same data processing, learning and inference steps are applied 
for Duval and Rogers ratios. 

B. Evidence Combination 

When ratio-based DGA methods agree on the diagnosis it 
increases confidence in its veracity, but sometimes there are 
conflicts among their outcomes. The application of BN models 
for DGA increases the diagnosis accuracy and also provides 
mechanisms to combine the outcomes of different methods in a 
logical manner. 

For example, given the gas values (R1=0.25, R2=0.15, 
R3=0.6, R4=1.6, R5=4, %CH4=0.1, %C2H2=0.1, C2H4=0.71), if 
ratio-based DGA methods are used, Rogers will classify it as 
an Arc fault, Duval as a Thermal fault, and Doernenburg will 
not classify it because it is not in the bounds of Table I. After 
the implementation of the proposed BN framework for Rogers, 



Doernenburg and Duval (Fig. 2), the classification results are 
shown in Fig. 4. Doernenburg’s BN classifies it as Normal 
degradation, Rogers’ BN classifies it as an Arc fault, and 
Duval’s BN classifies it as Normal degradation. The inclusion 
of Normal values in the BN model enabled Doernenburg’s BN 
model to learn the normal degradation pattern (Fig. 3). 

 

Fig. 4. Classification results example. 

This conflict situation can be resolved using evidential 
reasoning methods [10]. This work focuses on arithmetic-based 
evidence combination methods: 

(i) Majority voting: taking into account the outcome of each 
technique, the votes of each technique are counted, and the 
fault with the highest number of votes is assigned. In case of 
equal votes, the fault with the highest likelihood is selected. 

(ii) Average ensemble: after generating the probabilistic 
outputs of each technique, the mean probability is quantified 
for each fault considering all the outcomes of all the techniques 
and assigns the corresponding fault to the highest likelihood 
fault.  

Majority voting diagnoses the case above as Normal 
degradation with full confidence, whereas the average 
ensemble diagnoses Normal degradation with probabilistic 
values as shown in Fig. 4. Both results match with the actual 
transformer’s health state. 

V. RESULTS 

Ratio-based DGA methods, BN models, and evidence 

combination methods were tested on the IEC TC 10 dataset 

[11] through the procedure introduced in Section IV. This 

dataset is comprised of 167 samples of seven different gasses 

(C2H6, C2H4, H2, CH4, C2H2, CO, CO2), labelled with their 

corresponding failure causes as follows: 5.3% PD, 44.4% Arc, 

20.4% Thermal, 29.9% Normal. Table VI displays the results 

for each of these cases. The performance was measured 

through the accuracy of the classifier with respect to the 

labelled failure causes in the IEC TC10 database. 
The highest accuracy is obtained with the average 

probability model with a maximum accuracy of 88.3%. As for 
the accuracy for each failure mode, the highest accuracy for the 
thermal and PD faults is obtained with the Duval’s triangle 

(87.7%, 96.9%), the arcing fault is best captured with the 
average probability ensemble, and normal degradation with the  
Doernenburg’s Bayesian network model (64%). 

TABLE VI.  ACCURACY RESULTS FOR DIFFERENT DIAGNOSIS METHODS 

Approach 
Accuracy 

Overall Thermal PD Arc Normal 

Rogers 

Ratio 

42.39% 

± 7.4% 

58.5% ± 

18.72% 

12.7% ± 

33.53% 

66.2% ± 

11.4% 

3.7% ± 

11% 

Doern. 

Ratio 

60.8% ± 
6.5% 

74.3% ± 
16.9% 

73.9% ± 
35.2% 

94% ± 
6% 

0% 

Duval 

Triangle 

64.79% 

± 7.4% 
87.7% ± 

12.6% 

96.9% ± 

17% 

70.7% ± 

10% 
0% 

Rogers 

BN 

73.76% 
± 7.2% 

70.2% ± 
18% 

34.08% 
± 13.6% 

93.72% 
± 6.1% 

61.5% ± 
15.8% 

Doern* 

BN 

79.86% 

± 6.6% 

74.3% ± 

16.9% 

73.9% ± 

35.2% 

94% ± 

6% 
64% ± 

15% 

Duval* 

BN 

72.8% ± 
7% 

49.9% ± 
20.2% 

96.3% ± 
18.8% 

96.3% ± 
5% 

49.7% ± 
16.1% 

Majority 

Voting 

72.75% 

± 7% 

78.76% ± 

15.2% 

50.4% ± 

39.8% 

91.9% ± 

6.5% 

43.7% ± 

14.8% 

Average 

Probability 

81.2% ± 

7.1% 

83.63% ± 
14.3% 

69.9% ± 
37.25% 

98.28% 

± 3.4% 

56.56% 
± 42.5% 

* including normal states in the BN model 

VI. CONCLUSIONS 

This paper presents an evidence combination approach 
based on Bayesian networks. The novel method takes into 
account expert knowledge embedded in industry standard 
DGA evaluation methods (Rogers, Duval, Doernenburg), 
increases the engineering confidence in the results by removing 
inconsistencies, and obtains a maximum diagnosis accuracy of 
88.3% tested on the IEC TC10 dataset [10]. 
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