Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

Manahan, G.G. and Habib, A.F. and Scherkl, P. and Delinikolas, P. and Beaton, A. and Knetsch, A. and Karger, O. and Wittig, G. and Heinemann, T. and Sheng, Z.M. and Cary, J.R. and Bruhwiler, D.L. and Rosenzweig, J.B. and Hidding, B. (2017) Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nature Communications, 8 (15705). ISSN 2041-1723

[img]
Preview
Text (Manahan-etal-NC-2017-Single-stage-plasma-based-correlated-energy-spread-compensation)
Manahan_etal_NC_2017_Single_stage_plasma_based_correlated_energy_spread_compensation.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.