Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Control design of a neutral point clamped converter based active power filter for the selective harmonic compensation

Morales, José Luis Monroy and Ángeles, Máximo Hernández and Campos-Gaona, David and Peña-Alzola, Rafael (2017) Control design of a neutral point clamped converter based active power filter for the selective harmonic compensation. In: 2016 IEEE PES Transmission and Distribution Conference and Exposition-Latin America, PES T and D-LA 2016. Transmission and Distribution Conference and Exposition: Latin America, IEEE/PES . Institute of Electrical and Electronics Engineers Inc., Piscataway, p. 7. ISBN 9781509028757

Text (Morales-etal-PESTDCE-2016-Control-design-of-a-neutral-point-clamped-converter-based-active-power-filter)
Morales_etal_PESTDCE_2016_Control_design_of_a_neutral_point_clamped_converter_based_active_power_filter.pdf - Accepted Author Manuscript

Download (831kB) | Preview


This paper presents the control of an active power filter (APF) based on a 3-phase, 3-level neutral point clamped (NPC) converter with selective harmonic compensation. To achieve the selective harmonic compensation, the APF use several synchronous rotatory frames, which are rotating at the angular frequency and sequence of their respective harmonics, to detect and control the magnitude and angle of each individual harmonic using d and q variables. A three dimensional space vector modulator (3D-SVPWM) is used to generate the compensation currents. Due to its multilevel topology, the proposed active power filter can be used in high voltage power quality applications, such as sub-transmission and distribution levels. Simulation results are shown to validate the proposed solution and corroborate the proper function of the multilevel active power filter.