Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Efficient delegated private set intersection on outsourced private datasets

Abadi, Aydin and Terzis, Sotirios and Metere, Roberto and Dong, Changyu (2017) Efficient delegated private set intersection on outsourced private datasets. IEEE Transactions on Dependable and Secure Computing. pp. 1-15. ISSN 1545-5971

[img]
Preview
Text (Abadi-etal-TDSC2017-Efficient-delegated-private-set-intersection-on-outsourced)
Abadi_etal_TDSC2017_Efficient_delegated_private_set_intersection_on_outsourced.pdf - Accepted Author Manuscript

Download (988kB) | Preview

Abstract

Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets and the computation. In this paper, we propose two protocols for delegated PSI computation on outsourced private datasets. Our protocols have a unique combination of properties that make them particularly appealing for a cloud computing setting. Our first protocol, O-PSI, satisfies these properties by using additive homomorphic encryption and point-value polynomial representation of a set. Our second protocol, EO-PSI, is mainly based on a hash table and point-value polynomial representation and it does not require public key encryption; meanwhile, it retains all the desirable properties and is much more efficient than the first one. We also provide a formal security analysis of the two protocols in the semi-honest model and we analyze their performance utilizing prototype implementations we have developed. Our performance analysis shows that EO-PSI scales well and is also more efficient than similar state-of-the-art protocols for large set sizes.