Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Efficient delegated private set intersection on outsourced private datasets

Abadi, Aydin and Terzis, Sotirios and Metere, Roberto and Dong, Changyu (2017) Efficient delegated private set intersection on outsourced private datasets. IEEE Transactions on Dependable and Secure Computing. pp. 1-15. ISSN 1545-5971

Text (Abadi-etal-TDSC2017-Efficient-delegated-private-set-intersection-on-outsourced)
Accepted Author Manuscript

Download (988kB) | Preview


Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets and the computation. In this paper, we propose two protocols for delegated PSI computation on outsourced private datasets. Our protocols have a unique combination of properties that make them particularly appealing for a cloud computing setting. Our first protocol, O-PSI, satisfies these properties by using additive homomorphic encryption and point-value polynomial representation of a set. Our second protocol, EO-PSI, is mainly based on a hash table and point-value polynomial representation and it does not require public key encryption; meanwhile, it retains all the desirable properties and is much more efficient than the first one. We also provide a formal security analysis of the two protocols in the semi-honest model and we analyze their performance utilizing prototype implementations we have developed. Our performance analysis shows that EO-PSI scales well and is also more efficient than similar state-of-the-art protocols for large set sizes.