Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Laboratory testing of a MEMS sensor system for in-situ monitoring of the engineered barrier in a geological disposal facility

Yang, Wenbin and Lunn, Rebecca J and Tarantino, Alessandro and El Mountassir, Grainne (2017) Laboratory testing of a MEMS sensor system for in-situ monitoring of the engineered barrier in a geological disposal facility. Geosciences, 7 (38). ISSN 2076-3263

[img]
Preview
Text (Yang-etal-Geosciences-2017-Laboratory-testing-of-a-MEMS-sensor-system-for-in-situ)
Yang_etal_Geosciences_2017_Laboratory_testing_of_a_MEMS_sensor_system_for_in_situ.pdf
Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    Geological disposal facilities for radioactive waste pose significant challenges for robust monitoring of environmental conditions within the engineered barriers that surround the waste canister. Temperatures are elevated, due to the presence of heat generating waste, relative humidity varies from 20% to 100%, and swelling pressures within the bentonite barrier can typically be 2-10 MPa. Here, we test the robustness of a bespoke design MEMS sensor-based monitoring system, which we encapsulate in polyurethane resin. We place the sensor within an oedometer cell and show that despite a rise in swelling pressure to 2 MPa, our relative humidity (RH) measurements are unaffected. We then test the sensing system against a traditional RH sensor, using saturated bentonite with a range of RH values between 50% and 100%. Measurements differ, on average, by 2.87% RH, and are particularly far apart for values of RH greater than 98%. However, bespoke calibration of the MEMS sensing system using saturated solutions of known RH, reduces the measurement difference to an average of 1.97% RH, greatly increasing the accuracy for RH values close to 100%.