Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Automated microstructural analysis of titanium alloys using digital image processing

Campbell, A. and Murray, P. and Yakushina, E. and Marshall, S. and Ion, W. (2017) Automated microstructural analysis of titanium alloys using digital image processing. IOP Conference Series: Materials Science and Engineering, 179 (1). ISSN 1757-899X

[img]
Preview
Text (Campbell-etal-IOP-2017-automated-microstructural-analysis-of-titanium-alloys)
Campbell_etal_IOP_2017_automated_microstructural_analysis_of_titanium_alloys.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (1MB)| Preview

    Abstract

    Titanium is a material that exhibits many desirable properties including a very high strength to weight ratio and corrosive resistance. However, the specific properties of any components depend upon the microstructure of the material, which varies by the manufacturing process. This means it is often necessary to analyse the microstructure when designing new processes or performing quality assurance on manufactured parts. For Ti6Al4V, grain size analysis is typically performed manually by expert material scientists as the complicated microstructure of the material means that, to the authors knowledge, no existing software reliably identifies the grain boundaries. This manual process is time consuming and offers low repeatability due to human error and subjectivity. In this paper, we propose a new, automated method to segment microstructural images of a Ti6Al4V alloy into its constituent grains and produce measurements. The results of applying this technique are evaluated by comparing the measurements obtained by different analysis methods. By using measurements from a complete manual segmentation as a benchmark we explore the reliability of the current manual estimations of grain size and contrast this with improvements offered by our approach.