Quantitative shadowgraphy and proton radiography for large intensity modulations

Kasim, Muhammad Firmansyah and Ceurvorst, Luke and Ratan, Naren and Sadler, James and Chen, Nicholas and Sävert, Alexander and Trines, Raoul and Bingham, Robert and Burrows, Philip N. and Kaluza, Malte C. and Norreys, Peter (2017) Quantitative shadowgraphy and proton radiography for large intensity modulations. Physical Review E, 95. 023306. ISSN 2470-0053 (https://doi.org/10.1103/PhysRevE.95.023306)

[thumbnail of Kasim-etal-PRE-2017-Quantitative-shadowgraphy-and-proton-radiography-for-large-intensity-modulations]
Preview
Text. Filename: Kasim_etal_PRE_2017_Quantitative_shadowgraphy_and_proton_radiography_for_large_intensity_modulations.pdf
Accepted Author Manuscript

Download (4MB)| Preview

Abstract

Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.