Effect of Water on Cu Electrodeposition from **Ethaline Deep Eutectic Solvent**

¹Priscila Valverde, ²Sudipta Roy, ³Todd Green Department of Chemical and Process Engineering, University of Strathclyde, Glasgow-Scotland, G1 1XJ ¹priscila.valverde-armas@strath.ac.uk, ²sudipta.roy@strath.ac.uk, ³todd.green@strath.ac.uk

Introduction		Experimental		
Electrodeposition	Ionic Liquids	1. Karl Fischer titration to determine water content	2. Physical properties at differing water content	3. Electrochemical behaviour: Influence of
$Cu^{2+} + e^{-} \rightarrow Cu^{+}$ $Cu^{+} + e^{-} \rightarrow Cu^{0}$ Power supply $- ^{+}$	Chloroaluminate ionic liquids	 In ethaline w/o 0.2 M CuCl₂·2H₂O. In the electrolyte that was exposed to the air over 4 weeks. 	 Conductivity Viscosity Density 	 water on limiting current RDE experiments in a divided electrochemical cell using Pt as WE and CE and a Ag wire as RE. T= 25 °C Rotation speed: 700 rpm
e ^ *e ⁻		4. Electrodeposition experi	iments	

Deep eutectic solvents

- Stable (water tolerant)
- Reasonable cost
- May be exploitable at large scale

Deep eutectic solvent: Ethaline

Speciation of Cu in ethaline

- Water was added gradually to the electrolyte.
- The spiked water was the same moisture adsorbed by the electrolyte over 4 weeks.

5. Deposit characterisation

Morphology: Hitachi SU6600 SEM. Purity of deposits: Oxford Inca 350 X-Max detector.

Galvanostatic plating □ Operating current= 80% i_{Lim} \Box t= 7200 s, WE= steel disc

Results & Discussion

Effect of water on morphology

Importance of the study

Historically, metal electrodeposition from ionic liquids were carried out from dry systems. However, ethaline is a hygroscopic substance; therefore, the effect of H₂O on Cu deposition needs to be understood.

Research questions

What is the ability of the electrolyte to uptake water?

What is the effect of water on the physical properties and on the electrochemical behaviour of the electrolyte?

ethaline. closed beaker

Effect of water on physical properties

Water content (wt%)	η (cP)	κ (mS/cm)	ρ (g/cm³)
3	0.044	0.009	1.13
6	0.034	0.010	1.12
10	0.022	0.012	1.12
15	0.015	0.015	1.11

Does water improve or deteriorate the characteristics of Cu deposits?

Conclusions

- The absorption rate of H₂O of the electrolyte with cupric chloride salt was 0.42 wt%/day.
- The limiting currents of the process are increased with high water concentrations, which is explained by the capacity of H_2O to reduce viscosity and promote the diffusivity of Cu²⁺ ions in the solution.
- The uniformity of Cu deposits is deteriorated with increasing H_2O content.
- Water content changes the morphology of Cu deposits. Moreover, due to changes in the current distribution, the shape of the deposits differs at the centre and at the edge.

Acknowledgements

