
1 | P a g e  

 

Full-Scale CFD Investigations of Helical Strakes as a Means of 

Reducing the Vortex Induced Forces on a Semi-Submersible 

Vegard Holland, Tahsin Tezdogan*, Elif Oguz  

Department of Naval Architecture, Ocean and Marine Engineering, Henry Dyer Building, University 

of Strathclyde, 100 Montrose Street, Glasgow, G4 0LZ, UK 

*
 Corresponding author; e-mail: tahsin.tezdogan@strath.ac.uk, phone: +44(0)1415484532 

ABSTRACT 

As the search for oil in the Gulf of Mexico (GoM) moves into deeper waters, floating platforms such 

as semi-submersibles are in increasing demand. As semi-submersibles increase in size, the effect of 

vortex-induced motions (VIMs) becomes a significant problem in their design. VIMs stem from 

transverse forces caused by the current affecting the platform, with vortexes moving downstream on 

either side of the structure. The loop/eddy current phenomenon in the GoM leads to a constant current 

being present in the area, with speeds of up to 1.8 m/s. The accurate prediction of the vertical and 

transverse motions of semi-submersibles is crucial for the design of the riser systems. It is therefore 

beneficial to investigate the hydrodynamic forces acting on the geometry, and means of reducing these 

forces. A common method of reducing transverse forces is the addition of column appendages, such as 

helical strakes. In this paper, full-scale computational fluid dynamic analyses are carried out to 

examine the transverse forces caused by this vortex shedding using realistic current velocities in the 

GoM. Helical strakes are attached to the geometry to break up the coherence of the vortex shedding 

and the performance of these strakes is investigated numerically. 
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1. Introduction  

When oil drilling moved into the offshore waters in the early 1900s, floating drilling rigs which were 

able to move around the waters were required. Until the 1950s, monohull ships were used to conduct 

these drilling activities, but they were found to have significant motions in waves. Following this, the 

industry sought more stable drilling platforms for offshore drilling, and in the 1960s the first semi-

submersibles were introduced.  

A semi-submersible offers a large flexible work platform for various offshore activities like drilling 

rigs, production platforms and accommodation units. These activities benefit from small motion 

responses as they all have strict safety regulations and motion restrictions potentially adversely 
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affecting uptime. Drilling rig downtime is often caused by a combination of excessive vessel motions 

in the transverse direction as well as heave motions in the vertical direction. For production semi-

submersibles, the heave and transverse motions (sway) are the key parameters for the design of the 

riser and mooring systems, driving both cost and complexity of the riser and mooring system. It is 

therefore critical to investigate the hydrodynamic forces affecting the structures and to investigate 

means for reducing such forces. 

The Gulf of Mexico (GoM) is an ocean basin located between the United States in the north and west, 

Mexico in the south and Cuba in the east. The GoM sits on huge deposits of oil and gas, and is one of 

the largest petroleum producing areas in the United States. Most natural resources discovered are 

located in deep waters, requiring floating drilling and production platforms. The GoM experiences a 

phenomenon of so-called loop/eddy currents, which occurs when Caribbean water enters from the 

south, does a “loop” within the Gulf, and exits in the east where it joins up with the Gulf Stream. This 

leads to constant currents being present in the GoM, with speeds reaching up to 1.8 m/s, affecting all 

platforms located within the gulf.  

All structures submerged in a fluid flow are affected by vortex induced motions/vibrations depending 

on the Reynolds number (Re). These motions are the result of oscillating surface pressures induced by 

vortex shedding on either side of the structure. The motion in a transverse direction to the flow is 

dominant compared to the inline direction. The vessel responses caused by vortex-induced motions 

(VIMs) can therefore be narrowed down to two dominant directions; surge and sway. The magnitude 

of the forces created by the vortexes are very dependent on the diameter of the structure. In contrast to 

the conventional semi-submersibles having slender columns, ‘deep draft semi-submersibles’ have 

large diameter columns, and are therefore more affected by the VIM phenomenon compared to the 

conventional ones. As mentioned by Kim et al. (2015) the prediction of VIM is a difficult task due to 

the complex behaviour of vortex structure shedding and their interactions with a structure in higher 

Reynolds numbers. 

Through the years many different methods have been used to determine the motions of a semi-

submersible floating in a geographical area. Sengupta and Chatterjee (1986) proposed a simple 

analytical method to predict the motion responses of a semi-submersible to regular waves. They 

reported that their numerical results were in good agreement with the experimental results. Another 

way of determining vessel motions is model testing, as carried out in Lundgren and Berg (1982). They 

performed experimental studies with a four-column semi-submersible drilling rig in regular and 

irregular seas measuring motions and resistance in currents and waves. The model scale was 1:65 and 

the model was moored with catenary mooring lines. Their study explicitly showed the effect of the 

metacentric height of the rig on the motion responses of the platform. As clearly explained in Rijken 

and Leverette (2008), the crucial parameters determining the VIM responses in tank tests are the 
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reduced velocity, Froude and Reynolds numbers. Of the three parameters, the reduced velocity is the 

most critical one which is used to assess the experiments. Rijken and Leverette (2008) highlight the 

biggest issue associated with model experiments is the scaling such that the lower Reynolds number of 

the model compared to the prototype may undergo a different viscous flow regime which could lead to 

a different response between the model and prototype. They also state that vortex shedding location is 

independent of heading and almost independent of current speed. Their study showed that there is no 

significant change in vortex generation in model tests due to location of appurtenances. This is due to 

fact that the Reynolds number is not expected to alter the location of vortex generation in the model. 

Conversely, as explained in Rijken and Leverette (2008) Reynolds number is still crucial in 

determining the other viscous effects i.e. drag load. In order to avoid any scaling effects, a full-scale 

model is used for all simulations reported in this paper. Around the same time, Roddier et al. (2009) 

experimentally investigated the effect of Reynolds number and hull appurtenances (such as chains, 

pipes and anodes) on VIMs using a vertically moored truss spar model with strakes. They performed 

three sets of experiments at varying headings and reduced velocities to address the scale issue 

inherited in any experiments. 

Recently a number of experimental studies have been carried out to determine the vortex-induced 

motions of a semi-submersible. To give an example from the published literature, Hong et al. (2008) 

conducted seakeeping model test experiments with a deep-draft semi-submersible (DDS) to predict its 

motion characteristics in varying wave, wind and current conditions. Their findings revealed that a 

DDS may undergo significant VIM in the direction normal to the current. Their experimental results 

also showed that the amplitude of the VIM is significantly affected by the current speed and the wave 

excited particle velocity. Later, Gonçalves et al. (2012) presented an experimental study outlining the 

effects of current heading and hull appendages on the VIM of a semi-submersible by measuring its 

surge, sway and yaw amplitudes. They presented their findings in detail in their paper with an aim to 

show which maximum motions are experienced in each mode of motion. 

Armin and Srinil (2013) presented a mathematical fluid-structure interaction modelling and analysis of 

two flexibly-mounted circular cylinders arranged in tandem and subject to fluid cross flows in their 

paper. They used two different semi-empirical wake oscillator models based on the van der Pol and 

Rayleigh equations to determine the hydrodynamic lift and buffeting forces and their time variations. 

They predicted the response amplitude behaviours using a direct numerical time integration approach 

and they also carried out a parametric study to determine the vortex- and wake-induced vibration 

transverse response of the two interfering upstream and downstream cylinders. Their study led to the 

development of another thorough study on the vortex-induced vibration (VIV) modelling of cylinders 

as reported in Armin (2016), who carried out a series of experimental and numerical studies to assess 

the effect of spacing between two cylinders on the VIV response of each cylinder. Armin used two 

experimental configurations using identical and non-identical cylinders at various speeds which 
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indicates the effect of Re on the cylinders’ response. Armin also predicted the effect of natural 

frequency on the behaviour of non-identical cylinders using two sets of similar structures. Finally, 

Armin made some suggestions for future research in this area. We believe that in this paper we are 

addressing one of Armin’s future recommendations by carrying out a detailed computational fluid 

dynamics (CFD) work focusing on the effect of strakes on the flow characteristics and VIM responses 

of a multi-column cylinder. 

As an alternative to experimental methods, CFD-based methods have been used to accelerate research 

devoted to semi-submersibles. Recent developments in computer technology have enabled CFD 

methods to be utilised to thoroughly analyse VIM problems pertaining to semi-submersibles. The 

research in this area includes the interactions of the vortexes caused by one column which affects the 

flow characteristics of the columns behind it. These are very complex simulations, though fortunately 

it is possible to run such simulations in a reasonable amount of time with today’s computational 

resources. Tan et al. (2014a) attribute the main reason behind the popularity of CFD methods to the 

fact that CFD methods are capable of simulating specific conditions such as full-scale Reynolds 

number effects which cannot be determined experimentally. 

Tan et al. (2014b) numerically investigated the effect of hull appurtenances on the VIM of a ‘tension 

leg platform’ (TLP) designed for the Southeast Asian region. In order to check the accuracy of the 

CFD calculations, experiments were also performed using a 1:70 scale model of their TLP which is 

composed of circular columns. Their results showed that the measured sway responses have a small 

peak for 5<Ur<8 in the case of a hull with appurtenances at 22.5° current heading where VIM usually 

occur. This indicates that VIM behaviour of a hull depends on current heading. Both CFD calculations 

and experiments showed that the response amplitudes are lower in the case of appurtenances than the 

hull without appurtenances for the same reduced velocities. Their results showed that the VIM 

responses are not significant for their TLP model. It is worth noting that the results obtained in their 

study are constrained within the specific TLP design which has a shallow draft and short wetted 

column length above the spokes so the results cannot be generalised. 

It is critical to be able to predict the effect of appurtenances on the VIM performance of a floating 

offshore structure using the real current environment which it will experience. Tan et al. (2014a) 

carried out numerous CFD simulations to determine the effect of appurtenances on the VIM 

performance of a TLP which was designed for Borneo in South China.  They aimed to investigate the 

effects of reduced velocity, current heading and appurtenances on the TLP VIM performance. The 

correlation with CFD calculations and experimental results was presented and the effectiveness of the 

appurtenances was discussed. Their results demonstrated that the mean drag coefficients of the hull 

with and without appurtenances are very close and different current headings give different VIM 

motions. 
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Kim et al. (2015) performed experimental and numerical studies using a paired-column semi-

submersible model for different current speeds and headings. They reported that the biggest challenge 

in CFD simulation of VIMs is the validation of the employed numerical methods due to the scarcity of 

the experimental data. They also highlighted that the Reynolds number in the model-scale is two 

orders of magnitude less than the Reynolds number in the full-scale. As their study reports a detailed 

validation and verification study of a typical VIM simulation, their paper is heavily consulted for this 

study’s time-step and mesh generation resolutions as explained in Section 3. 

Ma et al. (2013) reported that the actual severity of VIM in a real-life measurement is much less than 

predicted using full-scale CFD analysis. This proves that the results presented in this paper should be 

considered as a worst-case scenario where no restoring forces are present.  

The attachment of strakes or other appendages to reduce VIM has been thoroughly studied for spar-

platforms by many researchers such as Irani and Finn (2004, 2005), Roddier et al. (2009) and Wang et 

al. (2009). For example, Irani and Finn (2005) carried out a wide range of tests at a 1/40 model scale 

in order to investigate the effectiveness of different strake designs to reduce the Truss Spar VIV 

response. Two configurations were carried out to investigate the impact of strake pitch on VIV 

motions. Experiments were performed at the Force Technology’s tow tank laboratory in Lyngby, 

Denmark in 2005. The tank dimensions are reported as 240 m x 12 m x 5.4 m. These studies 

mentioned above explicitly state that helical strakes attached to the curves of the geometry can be very 

efficient in reducing VIM if designed correctly.  

Lefevre et al. (2013) presented extensive VIM CFD calculations using Star-CCM+ for a spar system in 

their paper. They compared their CFD predictions to those obtained from the experimental results. 

They performed turbulence model, mesh and time step sensitivity studies and showed the best 

resolutions for their CFD simulation. It is finally reported that their study can be taken as guidelines 

for VIM CFD calculations for a spar system.  

As newer semi-submersibles are getting larger in size, they are more exposed to VIM. It is therefore 

becoming more necessary to investigate the magnitude of the transverse forces acting on them and to 

investigate the methods to decrease the magnitude of excited forces. This study therefore aims to 

numerically assess the performance of helical strakes attached to the columns of a semisubmersible as 

a means of reducing the forces acting in a normal direction to the current. A Detached Eddy 

Simulation (DES)-based CFD method was used to perform the numerical simulations reported in this 

paper. In order to avoid scale effects, the analyses were carried out in the full-scale. As seen in the 

literature review, most of the numerical studies in this field were carried out with a model-scale 

geometry, hence our numerical results obtained for a full-scale semi-submersible model may be of 

interest to academics and practitioners working in this field when designing such appendages aiming 

to reduce VIMs and VIVs. 
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The semi-submersible geometry was initially modelled using the Dassault Systemes’ 3D-modelling 

software SolidWorks using their educational licence. This program allowed us an accurate generation 

of the semi-submersible geometry. The geometry was then imported into Star-CCM+, version 11. 

Star-CCM+ is a CFD-based finite volume code developed by CD-Adapco (2016). Following this, the 

CFD simulations were run for various combinations of geometry and current speeds utilising the high 

performance computer facilities at the University of Strathclyde, Glasgow. Details of the simulations 

completed in this work are given in the end of Sub-Section 2.1. 

This paper has been organised as follows. Section 2 gives background theory to VIM and vortex 

shedding problems. Afterwards, the numerical setup of the CFD model is explained, with details 

provided in the contained sub-sections in Section 3. Following this, in Section 4, all of the results 

obtained from this work, including a verification study, are presented and discussed. Finally, the main 

results drawn from this study are briefly summarised, and suggestions are made for future research in 

Section 5. 

2. Background theory 

2.1 Gulf of Mexico loop/eddy currents 

As warm Caribbean water enters the Gulf of Mexico from the south, it performs a loop within the Gulf 

before exiting just south of Florida to join up with the Gulf Stream. This loop varies in size and 

strength, but may reach up to Louisiana, located at the northernmost part of the Gulf. The loop current 

will occasionally shed a rotating ring of hot water called “loop eddy currents” (or “LC Eddy”) as seen 

in Figure 1.  
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Figure 1 Map of the Gulf Mexico and Caribbean waters showing the Loop Currents, Loop Eddy Currents and Gulf 

Stream (Oey et al., 2002) 

The loop current is the dominant feature of the water circulation in the Gulf of Mexico with peak 

speeds of 1.5-1.8 m/s. The loop/eddy currents are vital in the fuelling and generation of hurricanes that 

frequently wreak havoc in the area. As this is an area of deep waters and rich deposits of oil and gas, 

there are many floating production and drilling platforms like semi-submersibles in the area, all 

affected by the loop/eddy currents.  

The currents that affect the semi-submersible will mostly be loop/eddy currents. In the numerical 

calculations, three velocities (0.5 m/s, 1.0 m/s and 1.5 m/s) were selected to model the most prominent 

and consistent velocities in the area. It is necessary to note that all the current conditions were applied 

for a zero degree of heading angle. 

2.2 Flow regime 

To understand the flow behind a structure submerged in water affected by a current it is important to 

have an understanding of the non-dimensional Reynolds number: 

 
𝑅𝑒 =

𝑉𝐷

𝜈
  (1) 

where V is the flow velocity, D the structure/cylinder diameter (or characteristic length) and ν the 

kinematic viscosity of the fluid. When the Reynolds number increases, the flow characteristics around 
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and behind the structure change, going through different stages depending on the type of forces acting 

on the structure. The different regimes behind a tube depending on the fluid Re are shown in Figure 2.  

 

Figure 2 Regimes of fluid flow behind a smooth tube (Sumer and Fredsøe, 1997) 

As shown in Figure 2, separation of the flow from the cylinder begins at Re=5. In the region 5<Re<40 

two fixed vortices will appear in the immediate flow of the cylinder. When increasing the flow speed 

to the region of 40<Re<150, transverse forces start affecting the cylinder. This is caused by the 

phenomenon of vortex shedding where vortices are shed alternately from each side of the cylinder, 

generating cyclical transverse forces acting to the cylinder. When increasing Re the vortex street 

changes from laminar to turbulent and in the region 300<Re<3x105 the vortex street is fully turbulent. 

In this region the flow regime is called the subcritical flow regime.  

In the flow regime of 3x105<Re<3.5x106 the boundary layer becomes turbulent at the separation point. 

This happens at only one side of the cylinder but it does alternate non-cyclically. This leads to one side 
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being turbulent at the separation point, and the other laminar. This is called the critical flow regime 

and results in a narrower and disorganized wake. The turbulent vortex street is re-established in the 

region Re>3.5x106. This vortex street is very similar to the ones found for lower Reynolds number, but 

with a turbulent flow “disturbing” it. This is the region where most large structures (large diameters) 

that are placed in open water are found. This last regime is called the transcritical flow regime.  

2.3 Vortex shedding 

The most important and relevant effect mentioned in the previous section is the vortex-shedding 

phenomenon. The vortex shedding is caused by the incoming flow “rolling into” a shear layer (Figure 

3) that has been formed downstream of the cylinder. This shear layer is created by the separation of the 

boundary layer over the geometry surface due to the adverse pressure gradient. This pressure gradient 

is in turn created by the divergent flow at the back of the cylinder.  

 

Figure 3 Detailed picture of flow near separation (Sumer and Fredsøe, 1997) 

The point of separation is defined as where the shear stress reduces to zero. This is shown in Figure 4, 

where a positive pressure gradient dp/dx>0. This pressure gradient makes the velocity profile close to 

the geometry more and more S-shaped, eventually causing separation.   

 

Figure 4 Point of separation (White, 2006) 

The mechanism of vortex shedding is a continuous occurrence in the wake of the cylinder, alternately 

shedding vortexes from each side of the cylinder. It is described in Figure 5.  
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Figure 5 Mechanism of vortex shedding (Sumer and Fredsøe, 1997) 

Sumer and Fredsoe (1997) explain the mechanism of vortex shedding as quoted below: 

 “ … the larger vortex (Vortex A in Figure 5a) is likely to become strong enough to draw the opposing 

vortex (Vortex B) across the wake. The vorticity in Vortex A is in the clockwise direction (Figure 5b), 

while that in Vortex B is in the anti-clockwise direction. The approach of vorticity of the opposite sign 

will then cut off further supply of vorticity to Vortex A from its boundary layer. This is the instant 

where Vortex A is shed. Being a free vortex, Vortex A is then convected downstream by the flow. 

Following the shedding of Vortex A, a new vortex will occur at the same side of the cylinder, so-called 

Vortex C (Figure 5b). Vortex B will now play the same role as Vortex A, namely it will grow in size 

and strength so that it will draw Vortex C across the wake (Figure 5b). This will lead to the shedding 

of Vortex B. This process will continue each time a new vortex is shed at one side of the cylinder 

where the shedding will continue to occur in an alternate manner between the sides of the cylinder.” 

This alternating motion will lead to transverse forces attempting to move the structure in the transverse 

direction. If the structure is allowed to move such as in the case of semi-submersibles or spar 

platforms, this can lead to damage to equipment like the riser systems, which have strict movement 

limitations.   

2.4 Boundary layer 

As explained in Section 2.3, vortex shedding is caused by the incoming current being affected by the 

boundary layer of the geometry. As the thickness of the boundary layer is very thin, the number of 

cells needed in a computer model in order to simulate this is very high. As an accurate measurement of 

the simulated boundary layer the dimensionless wall distance was developed and is defined as 

*u d
y



   
 (2) 

where u* is the friction velocity calculated from the wall shear stress (τ) at the nearest wall, d is the 

wall distance and υ is the kinematic viscosity of the fluid. By definition, the wall shear stress 

magnitude is calculated by τw=ρu*2 in which ρ is the fluid density. 

2.5 Drag and sway forces 

In response to the periodic change in the vortex shedding, the pressure distribution around the wetted 

geometry will change periodically. This will lead to periodic alterations in the force components 

acting on the structure. In this paper two different force components will be measured and presented 

for varying current speeds. These forces involve the force in the direction of the current flow (drag 

force) and the force in the normal direction of the current flow (sway force). The latter one acts in the 
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transverse direction causing VIMs as discussed earlier. These forces are commonly represented by 

their non-dimensional forms, by the so-called force coefficients. A force coefficient is calculated by 

dividing the force magnitude to the product of (0.5AU2), where A is the cross-sectional area of the 

structure. 

2.6 Helical strakes 

To reduce the motions caused by the vortex shedding that can damage equipment and induce a fatigue 

failure, modes of altering the geometry that the fluid passes over is one approach. It is possible to 

mitigate VIV by streamlining the structure. Passive control options for suppressing VIV are given in 

Figure 6 as taken from Blevins (1990) and Kwon et al. (2002).  

 

Figure 6 Passive control options for supressing (Blevins, 1990 and Kwon et al. 2002) 
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One method of altering the geometry is introducing Helical Strakes that are welded on the curvatures 

of the geometry. Historically it has been used to reduce transverse forces on high chimney stacks and 

process towers, and when used offshore in the design of spar-platforms, and is shown to be extremely 

efficient, reducing the transverse movements by up to 80% (Kumar et al., 2008). 

 

Figure 7 Vortex shedding without and with helical strakes (Dirac Delta Consultants Ltd, n.d.) 

As shown in Figure 7, helical strakes work by breaking up the coherence of vortex shedding along the 

column, thereby reducing the cyclic transverse forces affecting the structure. However the change in 

geometry of the structure might increase the overall drag. Numerical studies mimicking experiments 

are also conducted using CFD in order to allow for correlation between the experimental and 

numerical results. As reported in Atluri et al. (2006), to assess the performance of helical strakes, CFD 

analyses were performed on spar-platforms with helical strakes appended. They carried out two series 

of tests for three different models. Hexahedral mesh was used in Model I and the geometry was 

selected similar to Halkyard et al. (2005)’s previous work. The second Model includes holes on the 

strakes and its appendage whereas Model III includes a truss section. The first set of tests aimed to 

determine the reduced velocity range from 4 m/s to 10 m/s for a heading of 150°. The second series of 

tests were performed using different current headings for a constant current velocity of 7 m/s in order 

to determine the impact of current heading on response. Their numerical results revealed the effect of 

including the appurtenances for different cases. For more detailed results, reference may be made to 

Atluri et al. (2006)’s paper.  

3. Numerical set-up 

Up to this point, this paper has provided a background to the study and has given an introduction to the 

research reported in this paper. This section will present details of the numerical modelling and 

techniques used in this work.  
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3.1 Geometry 

The semi-submersible model was created in a piece of 3D CAD software with the dimensions 

presented in Table 1. It has four square columns with four pontoons connecting them, all with rounded 

edges. It is worth noting that only the underwater part of the geometry was modelled in this study.  

Table 1 The dimensions of the semisubmersible in the full-scale, given in metres 

Part Item Value (m) 
 

Semi-submersible 

 

Draft 21.00 

Column C/C longitudinal 67.50 

Column C/C transverse 67.50 

Columns 

 

Column length 17.80 

Column width 17.80 

Column bilge radius 3.00 

Column transition height 6.60 

Pontoons 

 

 

 

Pontoon transition length 3.325 

Pontoon width 17.80 

Pontoon bilge radius bottom 1.125 

Pontoon bilge radius top 1.125 

Pontoon height 8.75 

 

A three-dimensional model of the semi-submersible geometry used in this study is shown in Figure 8. 

The geometry illustrated in the figure is a common semi-submersible model used in the Gulf of 

Mexico. 

 

Figure 8 Three-dimensional model of the semi-submersible 

The helical strakes attached to the columns for the second batch of simulations use dimensions taken 

from spar-platforms that operate in the same area, under the same loop/eddy currents. These strakes 

have been shown to be very effective, reducing the transverse forces of the spar-platforms by up to 

80%, as mentioned in Section 2.6. The dimensions used in the semi-submersible model were taken 

from Atluri et al. (2006). The width of the strakes was calculated to be 13% of the column width 

(0.13x17.80=2.3 m), as proposed by Atluri et al. (2006). Figure 9 shows one of the four identical 

columns with a helical strake covering each curve. 
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It is worth noting that in this study the helical strakes were placed at the rounded column corners as 

this is the site where significant vortex shedding occurs independent of the angle of attack of the 

current. The vortexes are generated as they follow the curvature of the rounded corner and are shed. 

The idea is therefore to disrupt this shredding using helical strakes and allow for the flow to separate 

differently through the height of the column. 

 

Figure 9 One of the four columns with helical strakes showing the width of the helical strakes 

3.2 Physics modelling 

The physical models define variables like fluid and flow data, turbulence models and the numerical 

methods adopted in this study to solve the governing equations. To realistically simulate vortex 

shedding on a full-scale geometry in a reasonable simulation time it is of great importance to select the 

correct physical models.  

Due to the high demand of computational power that a typical Large Eddy Simulation (LES) requires, 

a hybrid model called Detached Eddy Simulation (DES) has been developed and initially presented in 

Spalart et al. (1997). This model treats near-wall regions with the Reynolds Averaged Navier-Stokes 

(RANS) model while using the LES for the rest of the flow. This model was originally developed by 

replacing the distance function d in the Spalart-Allmaras (SA) function with a modified distance 

function 𝑑̃ = 𝑚𝑖𝑛[𝑑, 𝐶𝐷𝐸𝑆∆] where 𝐶𝐷𝐸𝑆 is a constant while ∆ is the largest dimension of the grid cell 

being solved. This simple modification altered the model completely, causing the model to behave as a 

RANS model in regions of small cells (close to walls) and in a Smagorinsky (LES) manner for the rest 

of the model. Similar to a previous CFD-based study published by Tan et al. (2014b), in this study the 
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DES approach was applied in all CFD simulations. An illustration of the theory behind the DES 

method is given in Figure 10. As also stated in Tan et al. (2014b) this method employs the all y+ wall 

treatment on the boundary layers. The all y+ wall treatment is a hybrid model, which provides a more 

realistic approach than the low-Re or the high-Re treatments. To calculate shear stress, this wall 

treatment uses blended wall laws, which present a buffer region that suitably blends the laminar and 

turbulent regions together. The result is similar to the low-Re y+ treatment as y+→0 and similar to the 

high-Re y+ treatment for y+ values greater than 30 (Tezdogan, 2015 and CD-Adapco, 2016). Since a 

full-scale model was used in this study, the y+ values on the geometry were relatively high.  

 

Figure 10 Sketch of RANS and LES regions in a DES approach (Sagaut et al., 2013) 

In addition to the above, in this study’s CFD work the Implicit Unsteady model is used with the 

segregated flow to control the update at each physical time for the calculation along with the time-step 

size. In this model, each physical time-step is controlled by some number of inner iterations to achieve 

the convergence of the solution in that given time-step. The number of inner iterations set in this study 

was 10 which was deemed to be sufficient to reduce the residuals by three to four orders of magnitude 

at each time-step. The same resolution was also adopted by Tan et al. (2014b). It should also be noted 

that the second-order temporal scheme was adopted to solve the transit term of the governing 

equations. In addition, a liquid model was activated in the CFD software to represent a single pure 

liquid substance. 

3.3 Computational domains and boundary conditions 

The walls of the computational domain must be given physical properties to define the boundary 

conditions of the simulation. Figure 11 delineates that a velocity inlet boundary condition was set in 

the negative x-direction to model the current fluid flow in the computational domain. In the 

downstream direction (the positive x-direction) a pressure outlet boundary condition was applied to fix 

the static pressure at the outlet. As can be seen from Figure 11, the other boundaries were set as a 

symmetry plane. It should be recapped that the first derivative of the velocity and shear stress are zero 

at the symmetry plane. The boundary condition on the semi-submersible model was designed as a no-

slip wall to ensure that the relative fluid velocity tangential to the wall was zero which is an important 
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factor in order to achieve any vortex shedding caused by shear stress in the boundary region. It should 

also be noted that when a no-slip wall is set, normal stress on the wall remains zero, as mentioned in 

Fergizer and Peric (2002). 

Taking precedence from similar previous studies (Kim et al., 2011, Tan et al., (2013, 2014a, 2014b) 

and Xu et al., 2012), the locations of the boundaries relative to the semi-submersible’s centre of 

gravity (CoG) were determined based on the overall length of the structure (C) as illustrated in Figure 

12. 

 

Figure 11 Notations of boundary conditions applied to the walls of the computational domain 
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Figure 12 The dimensions of the computational domain using top (the above figure) and side views (C: overall length 

of the model) 

3.4 Time-step selection 

The Courant number (CFL), which is the ratio of the physical time step (Δt) to the mesh convection 

time scale, relates the mesh cell dimension Δx to the mesh flow speed U as given below: 

U t
CFL

x





                                                                                                                                          (3)                                                                                                                                                     

The Courant number is typically calculated for each cell and should be less than or equal to 1 for 

numerical stability.  

Often, in implicit unsteady simulations, the time step is determined by the flow properties, rather than 

the Courant number. In order to gain a suitable level of accuracy within a reasonable running time, the 

time step size is determined by Δt=0.0042L/U (where L is the length of equal sides of the column) as 

proposed by Nishino et al. (2008), who performed numerical studies of fluid around a circular 

cylinder.  
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3.5 Mesh generation 

As mentioned in Section 1, the geometry is imported from SolidWorks into Star-CCM+. The mesh 

was generated using Star-CCM+’s automatic meshing facility, which resulted in an approximate total 

of 6.4 and 6.8 million cells for a simulation without and with strakes appended, respectively.   

3.5.1 Mesh generation without helical strakes 

To capture the complex flow around the semi-submersible, a number of volumetric controls were used 

in Star-CCM+ to refine the mesh in such specific areas. A cross-sectional view inside the 

computational domain showing the refined mesh areas can be seen in Figure 13. The mesh consists of 

hexahedral cells with various sizes with a prismatic layer close to the surface to capture the boundary 

layer effect causing the vortex shedding.  

 

Figure 13 A cross-sectional view of the mesh generated inside the computational domain 
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Figure 14 A cross-section of the computational mesh showing refined areas around the geometry 

As Figure 14 shows, refined meshes were used to capture various aspects of the flow. To capture the 

flow in the wake of the semi-submersible, a refined mesh was also applied. A finer mesh was 

constructed around the geometry to capture the flow between the columns and in the immediate wake 

of the second columns. This is where the most prominent vortexes are expected to occur. To achieve a 

smaller courant number around the geometry, a refined mesh was constructed around each column and 

pontoon, as well as an even more refined mesh around each column corner. This increased the stability 

and convergence of the model when the simulations were running. Figure 15 shows the three-

dimensional computational mesh-grid with one of the columns in focus. The blue mesh illustrates the 

mesh on the water surface while the grey cells illustrate the mesh on the geometry surface. 
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Figure 15 A view of the computational mesh without helical strake 

To recreate the boundary layer around the geometry a prism layer was applied. The prism layer had a 

total thickness of 0.1 m and consisted of 24 layers within this thickness. This ensured that the shear 

forces causing the vortex shedding were captured and that the cell size closest to the geometry was 

sufficiently thin to achieve a y+ value of around 1. The prism layer representing the boundary layer is 

shown in Figure 16. 
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Figure 16 Prism layer close to geometry curves (cross-section at=13 m) 

3.5.2 Mesh generation for the geometry with helical strakes 

The surface and volumetric mesh was generated in the same fashion as explained in Section 3.5.1. The 

only difference in terms of meshing is the increased wetted surface due to the extra geometry. The 

three-dimensional computational mesh grid is shown in Figure 17. As mentioned earlier, the blue 

mesh represents the mesh at the water level while the grey cells represent the mesh on the geometry. 

The prism layer generation around the strakes is shown in Figure 18. 
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Figure 17 A view of the computational mesh with helical strake 

 

Figure 18 A view of the prism layer generation around column and helical strakes  
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This increase in boundary layer cells leads to an increase in the total cell count of this domain up to 

6.8 million. 

3.6 Fourier analysis 

Fourier Series (FS) were used to post-process the unsteady time histories of the force coefficients 

under different current conditions. Each unsteady history φ(t) can be represented by a Fourier Series in 

time as follows: 

0

1

( ) .cos(2 ),  n=1,2,3,...
N

n n

n

t fnt    


                                                                                    (4) 

where φn is the nth harmonic amplitude and γn is the corresponding phase. These values can be 

calculated using the following expressions: 

2 2

n n na b                                                                                                                                        (5a) 
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n

n

b
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a


 
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 
                                                                                                                               (5b)                    

in which, 

0

2
( )cos(2 )

T

na t fnt dt
T

                                                                                                                  (6a) 

0

2
( )sin(2 )

T

nb t fnt dt
T

                                                                                                                 (6b) 

In these equations T designates the simulation time. The 0th harmonic amplitude φ0 in FS is defined as 

the average value of the time history of φ(t), which can be obtained as follows: 

0

0

1
( )

T

t dt
T

                                                                                                                                       (7) 

As explained by Tezdogan et al. (2015), the first FS harmonic φ1 refers to the linear term from the 

unsteady histories. Hence, the zeroth and first FS harmonics have been named as the fundamental 

components in the linear system. In particular, taking precedence from previous studies, we focused 

on the 0th and 1st order terms for the force coefficients in oscillation. During the post-processing of the 

quantities, it was observed that higher order terms have significant effects. This observation has also 

been reported in the literature. For example, Simonsen et al. (2013) claim that for resistance in waves, 

the second and third order FS terms may make up to 50 and 15% of the first order FS amplitude, 
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respectively. For any further details regarding the higher order terms, reference can be made to Otzen 

and Simonsen (2010).  

4 Results 

The following section will outline the simulation results achieved during the research reported in this 

paper. This section is divided into three sub-sections, each of which focuses on different aspects of our 

results. Before proceeding to assess the obtained results, it is first necessary to undertake a proper 

verification study to assess the simulation numerical uncertainty. A similar verification study was also 

used and presented in Tezdogan et al. (2016). 

4.1 Verification study 

A verification study was undertaken to estimate the discretisation errors due to grid-size and time-step 

resolutions for a representative case (geometry without helical strakes, current speed: 1.5 m/s). It is 

expected that the numerical uncertainties for the other cases are of the same order. 

Xing and Stern (2010) state that the Richardson extrapolation (RE) method (1911) is the basis for 

existing quantitative numerical error/uncertainty estimates for time-step convergence and grid-spacing. 

With this method, the error is expanded in a power series, with integer powers of grid-spacing or time-

step taken as a finite sum. Commonly, only the first term of the series will be retained, assuming that 

the solutions lie in the asymptotic range. This practice generates a so-called grid-triplet study. 

Roache’s (1998) grid convergence index (GCI) is useful for estimating uncertainties arising from grid-

spacing and time-step errors. Roache’s GCI is recommended for use by both the American Society of 

Mechanical Engineers (ASME) (Celik et al., 2008) and the American Institute of Aeronautics and 

Astronautics (AIAA) (Cosner et al., 2006). 

For estimating iterative errors, the procedure derived by Roy and Blottner (2001) was used. The 

results obtained from these calculations suggest that the iterative errors for both force coefficients are 

insignificant. 

Grid-spacing and time-step convergence studies were carried out following the GCI method described 

in Celik et al. (2008). The convergence studies were performed with triple solutions using 

systematically refined grid-spacing or time-steps. For example, the grid convergence study was 

conducted using three calculations in which the grid size was systematically coarsened in all directions 

whilst keeping all other input parameters (such as time-step) constant. The mesh convergence analysis 

was carried out with the smallest time-step, whereas the time-step convergence analysis was carried 

out with the finest grid size. 

To assess the convergence condition, the convergence ratio (Rk) is used, as given by: 
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                                              (8) 

where εk21=φk2-φk1 and εk32=φk3-φk2 are the differences between medium-fine and coarse-medium 

solutions, and φk1, φk2 and φk3 correspond to the solutions with fine, medium and coarse input 

parameters, respectively. The subscript k refers to the kth input parameter (i.e. grid-size or time-step) 

(Stern et al., 2006). 

Four typical convergence conditions may be seen: (i) monotonic convergence (0<Rk<1), (ii) 

oscillatory convergence (Rk<0; |Rk|<1), (iii) monotonic divergence (Rk>1), and (iv) oscillatory 

divergence (Rk<0; |Rk|>1). For diverging conditions (iii) and (iv), neither error nor uncertainty can be 

assessed (Stern et al., 2006). For convergence conditions, the generalized RE method is applied to 

predict the error and order-of-accuracy (pk) for the selected kth input parameter. For a constant 

refinement ratio (rk), pk can be calculated by: 
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(9) 

The extrapolated values can be calculated from Celik et al., (2008). 
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The approximate relative error and extrapolated relative error can then be calculated using Equations 

11 and 12, respectively (Celik et al., 2008): 
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Finally, the fine-grid convergence index is predicted by: 
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(13) 

It should be borne in mind that Equations 8-13 are valid for a constant rk value. Reference can be made 

to Celik et al. (2008) for the formulae valid for a non-constant refinement ratio. The notation style of 

this reference was used in this study in order to enable the verification results to be presented clearly. 

For both the mesh-spacing and time-step convergence studies, a constant refinement ratio of √2 was 

chosen in this study. It is of importance to mention that during the mesh convergence study, the 
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surface mesh properties on the semi-submersible geometry with the helical strakes appended were kept 

constant to model the structure accurately. Based on the mesh refinement ratio which was applied, the 

final mesh numbers for each mesh configuration are listed in Table 2. Similarly, the time-step 

convergence study was conducted with triple solutions using systematically lessened time-steps, 

starting from (Δt=0.0042L/U). 

Table 2. The final cell numbers for each mesh configuration as a result of the mesh convergence study 

Mesh configuration Total cell number 

Fine 6,406,511 

Medium 3,084,469 

Coarse 1,541,630 

 

The verification parameters of the force coefficients for the grid spacing and time-step convergence 

studies are presented in Tables 3 and 4, respectively.  

Table 3. Grid convergence study for sinkage and total resistance coefficient 

 
Drag coefficient (0th order FS harmonic) 

(with monotonic convergence) 

Sway force coefficient (0th order FS harmonic) 

(with monotonic convergence) 

r √2 √2 

φ1 0.8064 0.0444 

φ2 0.7706 0.0411 

φ3 0.6025 0.0096 

R 0.213 0.105 

p 4.46 6.51 

φext
21 0.81609 0.044786 

ea
21 4.44% 7.43% 

eext
21 1.19% 0.86% 

GCIfine
21 1.50% 1.09% 

 

Table 4. Time-step convergence study for sinkage and total resistance coefficient 

 
Surge force coefficient                      

(with monotonic convergence) 

Sway force coefficient                                   

(with monotonic convergence) 

r √2 √2 

φ1 0.8064 0.0444 

φ2 0.7658 0.0405 

φ3 0.6014 0.0085 

R 0.247 0.122 

p 4.04 6.07 

φext
21 0.81971 0.044947 

ea
21 5.04% 8.78% 

eext
21 1.62% 1.20% 

GCIfine
21 2.06% 1.52% 
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As can be seen from Tables 3 and 4, reasonably small levels of uncertainty were estimated for the 

obtained parameters. The numerical uncertainties in the finest-grid solution for drag and sway force 

coefficients are predicted as 1.50% and 1.09%, respectively (Table 3). These values rise to 2.06% and 

1.52%, respectively, when calculating the numerical uncertainty in the smallest time-step solution 

(Table 4). It can be interpreted that the CFD modelling is more sensitive to the change in the time-step 

resolution.  

4.2 Drag and sway force coefficients 

Having performed the necessary verification study, the remainder of this section addresses the key 

findings of this study.  

Table 5 presents a comparison of the 0th and 1st order FS harmonics for the drag and sway force 

coefficients between the semi-submersible geometry with and without strakes at the three current 

speeds. 

Table 5. The 0th and 1st order FS terms for the drag (Cx) and sway force (Cz) coefficients obtained from CFD 

Current Condition 
Semi-submersible geometry 

without strakes with strakes 

Current speed: 0.5 m/s [Re: 10264878]   

0th, 1st Cx 0.8976, 0.1191 1.1502, 0.0024 

0th, 1st Cz 0.0116, 0.0490 -0.0028, 0.0181 

Current speed: 1.0 m/s [Re: 20529757] 

 
0th, 1st Cx 0.7809, 0.0158 1.1068, 0.0157 

0th, 1st Cz 0.0635, 0.0912 -0.0419, 0.0772 

Current speed: 1.5 m/s [Re: 30794635] 

 
0th, 1st Cx 0.8064, 0.0214 1.1017, 0.0110 

0th, 1st Cz 0.0444, 0.0430 -0.0427, 0.0374 

 

As can be seen from Table 5, as the helical strakes appended to the hull increase the drag of the semi-

submersible model, they are capable of reducing the mean and first order transverse forces acting on 

the structure. Another interesting result to be drawn from the table is that the helical strakes work more 

efficiently at lower Reynolds numbers in reducing the mean transverse forces when compared to those 

measured for a bare geometry (without any strakes). 

The different flow characteristics in the semi-submersible geometry with and without helical strakes 

also lead to variations in the nondimensional y+ values around the model. Figure 19 demonstrates the 

y+ values around the semi-submersible geometry without and with strakes attached for a current speed 

of 1 m/s. As can be understood from Figure 19, at the same current speed condition, the wall y+ values 

on the geometry with strakes are higher than those on the structure without any strakes. This stems 
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from the higher drag values in the model with the strakes appended. A comparison of the relative cell 

velocity values on the semi-submersible geometry with and without strakes at the same current speed 

is made in Figure 20 to demonstrate the higher velocity values on the structure with strakes. 

 

Figure 19. Wall y+ distribution around the semi-submersible geometry without strakes (on the left) and with strakes 

(on the right) (Current speed= 1.0 m/s, 0° heading)  

 

 

Figure 20. Cell relative velocity magnitudes around the semi-submersible geometry without strakes (on the left) and 

with strakes (on the right) (Current speed= 1.0 m/s, 0° heading)  

4.3 Vorticity 

In fluid mechanics, vorticity is defined as the tendency for fluid particles to spin. It is mathematically 

defined as the curl of the velocity vector. In fluid dynamics the distribution of vorticity is commonly 

used to characterise vortices, which are a major component of turbulent flow. This sub-section 

therefore aims to show the effect of helical strakes to reduce the vorticity over the semi-submersible 

geometry. 

Table 6 displays the mean surface average vorticity values for the two different models for the three 

current speeds. As can be seen from the table, the vorticity on the semi-submersible geometry 

increases with the increasing current velocity or Reynolds number. This is as expected given that the 

higher the Reynolds number the stronger turbulent flow. That is to say, flows become more turbulent 

at higher Reynolds numbers. Table 6 also shows the mean vorticities for all of the current speeds are 

reasonably reduced when the helical strakes are appended to the semi-submersible hull.  
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Table 6. The mean surface average vorticity values for the semi-submersible model at different current speeds 

Current velocity (m/s) 
Mean surface average vorticity ( /s) 

Without strakes  With strakes 

0.5 3.05x102 7.87x101 

1 9.62x102 1.72x102 

1.5 1.93x103 2.62x102 

Figure 21 shows the vorticity distribution in magnitude over the semi-submersible model with and 

without strakes at a current speed of 1.5 m/s. As seen in the figure, the helical strakes work efficiently 

to reduce the vorticities that occur due to the turbulent behaviour of the fluid flow. Figure 22 

demonstrates the vorticity contours for the semi-submersible with and without helical strakes at a 

current speed of 1.5 m/s. Without helical strakes, it can clearly be seen from the vorticity contours that 

relatively symmetrical vortex shedding occurs around the upstream columns, promoting VIM. On the 

other hand, if helical strakes are in place, then vortex shedding occurs at the edges of the strakes, 

resulting in less symmetrical vortex shedding from the upstream columns. The present findings are 

consistent with the results of Tan et al. (2014a). It should also be mentioned that Figure 21 and Figure 

22 were obtained when the simulations had completed their run. 

 

 

Figure 21. Vorticity magnitudes on the semi-submersible geometry without strakes (on the left) and with strakes (on 

the right) (Current speed= 1.5 m/s, 0° heading) 

 

Figure 22. Vorticity contours for the semi-submersible model without strakes (on the left) and with strakes (on the 

right) (Current speed= 1.5 m/s, 0° heading) 
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5 Concluding remarks and future work 

In this paper, CFD calculations for a full-scale semi-submersible with and without helical strakes have 

been presented. The calculations have been carried out for three distinct current speeds that are 

prominent in the Gulf of Mexico due to its loop/eddy currents. To carry out the calculations, the finite 

volume code Star-CCM+ has been used with the DES model, which uses the RANS model inside the 

boundary region and LES model outside the boundary area. This allows a realistic simulation within 

the boundary region where the vortex shedding is taking place, while not using unnecessary amounts 

of computational power.  

This paper started with a detailed literature survey in the area of VIMs focusing on state-of-the-art 

CFD-based techniques. It is expected that our literature review summarises the recent studies of 

researchers performing numerical and experimental studies in the area of VIM/VIVs. Later, the 

theoretical groundwork of this study was presented as complementary to the literature review. 

Following this, the numerical modelling of this work’s CFD was explained in as much detail as 

possible. The figures related to the computational mesh from the domain were presented to 

complement our work’s meshing strategy. After that, the formulations were given for the Fourier 

analysis to facilitate the post-processing of the CFD result. Later, in the results section, the verification 

study was conducted and the numerical uncertainty results were provided in a standard tabular format. 

The results suggest very small uncertainties, especially for the mesh dependence test. The main 

simulation results show that the helical strakes are efficient in reducing the transverse forces whereas 

they increase the total drag of the geometry. In addition, the CFD results explicitly showed that the 

attachment of the helical strakes tend to reduce the vorticity on the semi-submersible model. 

This paper has provided a good starting point for the analysis of the hydrodynamics of helical strakes 

when appended to an offshore structure. It might be argued that the attached strakes for this semi-

submersible might be over dimensioned as it generated additional drag to the semi-submersible in 

question. The design should therefore be further analysed and optimised to achieve a good balance 

between increased drag and reduced transverse forces. Other designs could possibly be appendages or 

changes in the geometry of the columns, for example by adding volume in the middle of each column, 

thereby breaking up the coherence of vortexes shedding along the length of the column. An example 

of this is the ‘Heave and VIM Suppressed’ (HVS) semi-submersible proposed by Kyoung et al. 

(2015), adding volume at the bottom of the column to break up the coherence of vortex shedding along 

the column. 

Accounting for damping and restoring forces like mooring lines and riser systems to the numerical 

modelling, as well as letting the geometry move freely within the domain, will generate a more 

realistic simulation. This would allow the analysis of more realistic vortex induced motions like sway 

and surge movements when including the effect of the vessel’s own natural frequencies in the sway 
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and surge directions. It is also worth investigating the influence of different current headings which 

can cause lock-in, potentially resulting in large and extreme motion responses. 
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