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Abstract 

This paper presents an investigation of the machining response of materials 

metallurgically and mechanically modified at the micro-scale. Tests were conducted 

that involved micro-milling slots in coarse-grained (CG) Cu99.9E with an average grain 

size of 30 μm and ultrafine-grained (UFG) Cu99.9E with an average grain size of 200 

nm, produced by Equal-Channel Angular Pressing (ECAP).  

A new method based on Atomic Force Microscope (AFM) measurements is 

proposed for assessing materials’ microstructure effects in micro machining, i.e. the 

effects of material homogeneity changes on the minimum chip thickness required for a 

robust micro cutting processes with a minimum surface roughness.  



The investigation has shown that by refining the material microstructure the 

minimum chip thickness can be reduced and a high surface finish can be obtained. Also, 

conclusions were made that material homogeneity improvements lead to a reduction in 

surface roughness and surface defects in micro-cutting. 

 

Keywords:  micro-endmilling, material microstructure, grain size effects, surface 

finish, surface defects, ECAP, AFM, minimum chip thickness. 

 

1. Introduction 

 

For some time there has been an accelerating trend for products to be made 

smaller; this is particularly true in avionics, biotechnology, communications, electronics 

and medicine [1-9]. The technical complexity and the broad range of requirements that 

such miniaturised devices have to satisfy means that the manufacturing methods used 

for their production should be able to process different materials, including aluminium 

alloys, brass, ceramics, composites, copper, plastics, stainless steel and titanium [1, 9]. 

There are stringent requirements on both the micro fabrication techniques and materials 

used because of the need for reliable and robust components [10].  

A number of micro-manufacturing technologies have been developed for 

producing micro products/components. Among these techniques manufacturing 

methods that produce micro-features by removing material from a workpiece have 

shown high potential [8]. Different material removal mechanisms can be employed but 

predominantly mechanical and energy-based processes are used, i.e. mechanical micro-

machining, µ-laser ablation and µ-EDM [1-5, 8]. In addition, new bio-enabled 

techniques have been recently proposed that utilise microorganisms and bacteria to 



remove undesirable material from workpieces in a controllable manner [11-12]. They 

offer some advantages over other available technologies, i.e. low-energy consumption, 

no thermal damage and production of complex shapes, however the technology is still at 

its early stages of development and needs more optimisation to achieve higher material 

removal rates and improve the obtainable surface quality [12].  

Presently, micro-milling is the most popular machining technology when complex 

3-D microstructures are required [13] due to its accuracy, cost effectiveness, flexibility, 

and surface finish that can be achieved. However, important differences exist between 

micro- and macro-scale machining which have a significant influence on the material 

removal mechanisms [1]. This is because the grain sizes of most commonly used 

engineering materials, such as aluminium, copper and steel, and the feature sizes of 

micro-machined components or the edge radius of the cutting tools can be comparable 

in scale, as shown in Fig. 1, and therefore the material cannot be considered anymore 

isotropic or fully homogeneous [1, 5]. Consequently, it is necessary to carry out sub-

grain size (mechanical) processing [14]. Additionally, the crystalline texture of the 

material resulting from its processing could lead to variations in chip thickness and 

therefore the machining process can be considered to some extent stochastic. Cutting 

takes place in the so-called dislocation micro-crack range and the thickness of the 

removed material varys from 10 μm to 100 nm [14]. In particular, the cutting process of 

micro-scale machining does not rely only on developing micro-cracks along the grain 

boundaries but also involves dislocation slips in the crystalline structure of the material. 

In addition, during cutting, the dislocation density increases due to dislocations’ 

multiplication and the formation of new ones. Thus, material microstructure effects are 

important in micro-machining [1], and the specific processing energy required to initiate 



chip formation depends directly on the ability of a given metal to produce dislocation 

slips [14].  

 

 

Fig. 1: (a) macro and (b) micro cutting, showing relative dimensions of cutting 

tool and grain size 

 

This paper reports on a series of micro-milling experiments under different 

conditions to investigate the machining response of metallurgically and mechanically 

modified Cu99.9E workpieces with coarse and ultrafine grained microstructures. The 

aim was to determine the effects of material microstructure on machining conditions 

and surface quality. 

In addition, a high-precision method of assessing the homogeneity of the 

material microstructure is proposed based on Atomic Force Microscope (AFM) 

measurements of the coefficient of friction. This method offers a comparative 

assessment of the modified microstructure which enables initial prediction of the 

minimum chip thickness required to avoid detrimental changes in the cutting conditions. 

The results of machining two Cu99.9E workpieces with different microstructures are 

presented and the material effects on the surface quality are analysed and discussed.  

(a) (b) 



Following a review of related research, the remainder of the paper is organised 

as follows. First, the workpiece materials used in the research are discussed. Then, a 

method to assess the microstructure effects on materials’ homogeneity based on AFM 

measurements is presented. Next, the machining conditions used in the experiments are 

described and the rationale behind their selection is explained. Finally, the results from 

the carried out investigation of the material microstructure effects on cutting 

mechanisms and surface quality are discussed. Conclusions are made about the 

influence of material microstructure and cutting conditions on surface quality and also 

about the effectiveness of the proposed method for assessing the homogeneity of the 

workpiece material. 

 

2.  Literature review 

The achievable surface finish is one of the most important characteristics of any 

machining process. In micro-endmilling, the roughness of the machined surface can be 

of the same order as the dimensions of the functional features and the resulting surface 

finish is very difficult and almost impossible to improve by follow up post processing. 

The roughness generated in micro-scale machining cannot be fully explained using only 

kinematic parameters because surface effects play an important part in the process. It 

has been shown that the most important factors that affect the cutting mechanism are the 

tool cutting edge radius and properties of the workpiece material, particularly 

heterogeneity, grain size, elastic recovery and strain-hardening effects [15, 16].   

  

2.1. Process parameters effects 

Jiao and Cheng [17] examined the outcomes of different milling strategies using 

CVD diamond ball micro-endmills in terms of resulting surface quality on polymethyl 



methacrylate workpieces. The micro-milling strategy included tilting the tool, giving it 

either a lean angle of 5
o
 or 15

o
, or a lead angle of 15

o
. This was done to prevent the 

occurrence of zero cutting speed and associated rubbing at the ball point. Results 

showed that lower surface roughness was achieved when the feed and cutting directions 

were perpendicular to each other. Furthermore significant improvements were achieved 

by introducing a two-way machining strategy with up- and down-milling. However, 

optimum results, i.e. a roughness of 8.72 nm, were obtained when the two-way strategy 

was combined with a lean angle of 5
o
 and a Z-stepover of 1 µm but this was limited to 

only a small machining area in the experiments due to the process dynamics.  

Llanos et al., [18] conducted experimental studies on micro-milling of thin walls 

using tungsten carbide micro-end milling tools and thus to produce features with high 

aspect ratios. Two test materials were used, i.e. aluminium and brass. The tests 

conducted on both materials showed that down-milling gave a lower surface roughness 

than up-milling. Both materials provided better surface finish with higher spindle 

speeds. The axial depth of cut did not have any significant effect on the resulting surface 

finish and also the effect of the axial depth of cut was not linear. The minimum mean 

roughness was obtained at the lower settings of the axial depth of cut and feed rate and 

the higher spindle speed.  

Kuram and Ozcelik [19] carried out an experimental study with the aim of 

optimising micro-milling parameters for Ti6Al4V titanium alloy and inconel 718 

superalloy, both of which are widely used in the aerospace industry. Using analysis of 

variance the relative percentage contributions of micro-milling parameters on cutting 

forces, surface roughness and tool wear were investigated and regression models were 

developed. It was stated that these models could be used to predict cutting forces, 

surface roughness and tool wear in micro-milling of these materials. It was also found 



that in micro-milling of Ti6Al4V, surface roughness and Peak-to-Valley (P-to-V) Fy 

forces were mainly influenced by spindle speed, while for Inconel 718, the most 

effective parameter was feed rate. Also, it was reported that surface roughness and tool 

wear in micro-milling of Ti6Al4V and Inconel 718 were highly dependent on cutting 

conditions.  

2.2. Material microstructure effect  

Furukawa and Moronuki [20] observed different cutting mechanisms for 

polycrystalline, single crystal and amorphous materials, and also for brittle and ductile 

materials. They recommended that, by increasing the undeformed chip thickness to ten 

times the average grain size for a given material, it would be possible to avoid the 

negative crystallographic effects of a non-homogeneous material microstructure. 

Uhlmann et al., [21] reported an experimental study into micro-milling of 

sintered tungsten-copper composite materials with different ratios of tungsten and 

copper. They pointed out a strong relationship between surface quality and homogeneity 

of the material microstructure.  

Popov et al., [22] investigated the response of mechanically modified Al 5083 

alloy when milling thin features of micro components. They showed that through 

refinement of the material microstructure it was possible to significantly improve the 

surface integrity of the machined micro features.  

Min et al., [23] reported significant variation of surface and edge quality for 

single-crystal and polycrystalline copper workpieces due to different crystallographic 

orientations. For polycrystalline materials chip formation is influenced by the 

microstructure of the material, such as grain boundaries and grain orientation. For single 

single-crystal materials it is influenced by crystallographic orientation. These 



observations confirmed that microstructure variations have a significant effect on the 

burr topography, resulting surface roughness and edge quality.  

  Mian et al., [24] experimentally investigated at micro-scale, the machinability of 

coarse-grained, multi-phase ferrite/pearlite AISI 1040 steel. This material was selected 

because its typical grain size is large. It was found that the obtained surface roughness 

was highly dependent on the edge radius of the tool used and material microstructure, 

especially the grain size. It was concluded that both parameters should be determined 

prior to the machining operation and thus to optimise cutting conditions and achieving 

the best possible surface quality. 

In subsequent research, Mian et al., [25] experimentally compared two different 

steels; AISI 1005 (low carbon steel), and AISI 1045 (medium carbon steel with a 

distinct microstructure of near balance of pearlite and ferrite). The influence of the 

material microstructure on burr formation, microstructure change, surface finish and 

tool wear was investigated over a range of chip-loads. In terms of burr formation and 

tool wear it was found that larger burrs occurred when machining AISI 1005 than when 

machining AISI 1045, see Fig. 2a and 2b. Chip-load and workpiece material were both 

found to have a significant influence on the surface roughness. However, the surface 

finish was found to be more sensitive to chip-load (feed per tooth) and tool edge radius 

than the grain size of the workpiece material. This was concluded based on the 

improvements in surface finish obtained for chip-loads numerically close to the tool 

edge radius. This effect was seen for both workpiece materials (AISI 1005 and AISI 

1045) where, despite the differences in material grain sizes, similar roughness values 

were obtained. Nano-indentation tests were used to characterise the microstructure of 

the materials and results suggest that this technique could be usefully employed to 

assess the machinability of different workpieces. 



 

 

 

 

 

 

Fig 2: Burr size in (a) down-milling and (b) up-milling [25] 

Bajpai et al., [26] investigated the machinability of pyrolitic carbon (PyC), i.e. 

the interdependences between chip morphology, cutting forces, depth of cut, feed rate, 

machined surface morphology, spindle speed and surface roughness. Due to the PyC 

layered anisotropic structure the cutting experiments were carried out parallel to the 

layers (AB plane) and perpendicular to the layers (C plane). ANOVA analysis was used 

to identify significant factors that affect the machinability. It was reported that cutting 

forces were dependent on the used two cutting planes, with an increase of up to 150% 

when changing from AB to C plane. When cutting in the C plane it was found that any 

changes of the cutting parameters affected significantly the resulting surface roughness, 

whereas in the AB plane only tool diameter and feed rate were significant. A conclusion 

was drowned that the AB plane machining should be preferred because lower cutting 

forces would be required and a better surface finish could be obtained.   

Elkaseer et al., [27] proposed a model to predict the surface roughness generated 

during micro-endmilling of dual phase materials. The model considered material 

microstructure together with cutting tool geometry and feed rate. The model was 

validated in an experimental study, i.e. machining of two different steel samples, AISI 

1040 and AISI 8620, under a range of cutting conditions. The authors emphasized that 

(a) 
(b) 



the model performance was highly dependent on the entered material microstructure 

and on the use of appropriate cutting conditions. 

In follow-up research, Elkaseer et. al., [28] developed an analytical model for 

predicting surface roughness during the micro-machining of multi-phase materials in an 

experimental setup based on an Atomic Force Microscope (AFM) probe. The model 

considered the effect of both tcmin and elastic recovery. A series of experimental trials 

were carried out to validate the model based on scratching CuZn39Pb3, a dual-phase 

brass alloy, with an AFM-tip. Noticeable differences were observed in regards to the 

surface roughness obtained on the different phases under the same cutting conditions. 

This was considered as a clear evidence of the significant material microstructure 

effects on the resulting roughness in micro/nano cutting of dual-phase materials. The 

authors claimed good agreement between model and experimental results.  

Lauro et al., [29] conducted experimental trials to assess micro-milling forces 

when machining hardened steel with different grain sizes. It was found that feed rate 

was the most significant factors affecting the cutting force, i.e. large grain sizes led to  

lower cutting forces.  

In follow-up research, Lauro et al., [30] used an integrated least square model 

combined with a genetic algorithm to identify the optimal process parameters, i.e. 

cutting speed, feed rate and grain size were considered. The genetic algorithm was 

chosen because it is widely considered a robust and efficient optimisation method which 

can relatively easily be integrated into least squares algorithms. The two main factors 

considered to optimize micro milling of hardened steel were cutting force and torque. It 

was found that the most significant parameter in minimising both was the feed rate. 

However, the results also confirmed that an increase of grain sizes decreases the cutting 

force and thus affects the responses, particularly when machining hardened steel. The 



grain size variation influenced not only the properties of the materials, but also the 

feature sizes that could be achieved.  

The effect of crystallographic orientation when micro-milling a (001) single 

crystal silicon wafer was studied by Choong et al. [31]. White-light interferometry was 

used to determine edge quality, surface roughness and subsurface residual stress while 

ANOVA was employed to determine the relative importance of cutting speed, feed rate 

and axial depth. Up-milling in different directions was carried out using diamond-

coated end mills. It was found that machining surfaces along (100) plane were of better 

quality than those of (110).  

 

2.3  Minimum chip thickness in micro-machining 

In macro-milling, the chip thickness is sufficiently large and therefore it is not 

necessary to consider the effects of tool edge radius and uncut chip thickness. One of 

the important differences between macro- and micro-milling is the reduction in chip 

thickness which becomes the same order as the cutting edge radius of the tools used 

and, depending upon the material being milled, the grain size of that material. 

Researchers in micro-milling often refer to the minimum undeformed thickness of a 

chip removed from the workpiece surface with a tool with a given cutting edge radius 

under ideal conditions. This minimum chip thickness (tcmin) is the cutting limit below 

which no material removal will occur. It is now known that even a small change in the 

chip-load can have a significant influence on the material removal mechanism by 

changing the machining process from cutting to ploughing or slipping. Minimum chip 

thickness has been investigated by researchers using both analytical and experimental 

methods [7]. 



Liu et al. [32] developed an analytical model to predict minimum chip thickness 

(tcmin) based on slip line theory and consideration of the mechanical and thermal 

properties of the workpiece and cutting tools under different cutting conditions. 

However, while a constitutive flow stress model for the processed material is essential 

for estimating tcmin, few engineering materials have been tested and their constitutive 

flow stress models derived. It is not yet known whether significant differences in 

behaviour of modified microstructures is sufficiently small that they follow a similar 

constitutive flow stress model or whether this approach is limited to standard materials 

with known characteristics.    

Son et al., [33] have proposed an analytical model, Equation 1, to calculate tcmin 

based on the friction coefficient between the workpiece and the tool and tool edge 

radius. 

))
24

cos(1(*
min


 rtc                                               (1) 

        where:  tcmin is the minimum chip thickness; 

  r  is the cutting tool edge radius;  

  β  is the friction angle between a tool and uncut workpiece. 

 

Mian et al., [34], utilised acoustic emission (AE) to determine the value of tcmin 

during micro-milling of different workpiece materials. The change of the AE signal 

were used to identify the threshold conditions for the occurrence of tcmin. The results 

obtained were in good agreement with published results. The tcmin was found to vary 

between 11 % and 42 % of the tool edge radius for the used workpiece materials, i.e. 

AISI 1005 and AISI 1045 steels, Aluminium 6082-T6, Copper (OHFC) and Inconel 

718.  



Kang et al., [35] investigated how cutting edge radius affected the cutting force 

and tcmin when micro-milling AISI 1045 steel using tungsten carbide tools. Initial trials 

were carried out using half-immersion milling to determine the effects of cutting edge 

radius on the cutting forces. It was found that at lower feeds per tooth, the signals 

representing the cutting force showed the tool ploughed through and skidded over the 

surface rather than shearing it. However, when feed per tooth was greater than the 

cutting edge radius, the micro-scale milling forces appeared similar in form to those in 

conventional-scale milling processes, where the dominant mechanism is shearing. 

Cutting force behaviour allowed identification of the uncut tcmin, which was reported to 

be on average, one third of cutting edge radius of the tool.  

Jaffery et al., [36] used ANOVA to analyse performance parameters of a typical 

micro-machining process, i.e. side burrs, surface roughness and tool wear, to identify 

key process parameters. It was stated that micro-machining can be classified under two 

main categories depending on the undeformed chip thickness, particularly when it is 

greater or less than the tool edge radius. With undeformed chip thickness greater than 

edge radius, feed rate was the most significant parameter affecting burr width (80% 

contribution ratio), surface roughness (83%) and tool wear (41%). Thus, this type of 

machining is closer to macro-machining where the corresponding contributions of feed 

rate were 75%, 92% and 69%, respectively. When the undeformed chip thickness is less 

than the tool edge radius, corresponding contributions of feed rate were 52%, 53% and 

17%, respectively. These results confirm the importance of tool edge radius and 

minimum chip thickness in micro-machining.  

Oliveira et al. [37] investigated size effects in micro- and macro-milling slots in 

AISI 1045 steel, especially interdependences between cutting force (kc) and chip 

formation, surface roughness (Ra) and tool edge radius (re). It was reported that feed per 



tooth less than the cutting edge radius could lead to a disproportionate increase in the 

required cutting force and no chip formation. Also, it was found that the minimum 

uncut chip thickness ranged between 22% and 36% of the endmill edge radius.  

He et al., [38] proposed a theoretical model for predicting the size effects on 

resulting surface roughness in diamond turning when processing fine grain materials. 

The model considers process kinematics, material spring back, plastic side flow and 

takes into account certain random factors such vibrations in the workpiece matrix. It 

was claimed that the copy effect of the tool edge waviness was successfully integrated 

into the model kinematic element and a minimum undeformed chip thickness related 

function was derived for determining material spring back. The model’s predictions and 

its experimental validation showed that there was a substantial build-up of unremoved 

material ahead of the cutting edge when using a diamond cutting tool with large nose 

radius, and also that the plastic side flow had a greater effect on the resulting surface 

roughness than the kinematic component. This effect was explained with the inevitable 

occurrence of an inflection point depending on feed rate that led to size effects on 

resulting surface roughness.  

Willert et al., [39] investigated mechanical loads and surface roughness in 

precision turning of 42CrMoS4. The focus was on size effects that could occur due to 

changes in the ratio of undeformed chip thickness to cutting edge radius. It was found 

that when this ratio was higher than 3 the specific cutting force decreased slowly with 

its increase while when it was lower than 3 the force increased rapidly with its decrease. 

Surface roughness showed a similar trend for ratios higher than 3, i.e. it remained more 

or less constant while for ratios lower than 3, the surface roughness increased rapidly 

with the decrease of the cutting edge radius.  



From the literature review, it is clear that surface roughness and micro features 

produced by micro-cutting are highly dependent on the material microstructure, 

especially the material grain size and homogeneity, and the minimum chip thickness of 

the workpiece material. The motivation for this work was to investigate experimentally 

the machining response of mechanically and metallurgically modified polycrystalline 

materials, in particular ultra-fine-grained (UFG) Cu99.9E processed by the ECAP 

process. For comparison, the machining response of coarse-grained (CG) Cu99.9E was 

also studied. Another objective was to propose a method for assessing the 

microstructure effects on the material micro-machining response. In particular, to apply 

an AFM-based assessment of materials’ homogeneity effects on the machining response 

and thus to be able to select optimal cutting conditions and avoid entering the 

transitional regime associated with intermittent cutting and ploughing.  

 

3. Experimental set-up  

This section explains the experimental set-up. First, the microstructures of the 

workpieces are described. Then, the proposed method of judging the homogeneity of a 

microstructure is presented. Finally, the selected cutting conditions for the micro-

endmilling trials are discussed and the rationale behind their selection is given.    

 

3.1  Workpiece material microstructure 

The selected workpiece materials had two different microstructures, a coarse-

grained (CG) structure with an average grain size of 30 μm (Figure 3a) and an ultra-

fine-grained (UFG) structure with an average grain size of 200 nm (Figure 3b, 3c). The 

UFG material had been processed by equal channel angular pressing (ECAP) 8 times.  



 

Fig. 3: Microstructure of CG (a) and UFG (b, c) Cu99.9E 

 

3.2.1 Material characterisation and minimum chip thickness determination 

As previously stated, Son et al. [33] proposed an analytical model, Equation 1, 

to calculate the minimum chip thickness based on the tool edge radius and the friction 

coefficient between the workpiece and the tool. Generally, there are two methods of 

obtaining the coefficient of friction and thus the friction angle. One is to conduct a 

cutting test to measure the ratio of the tangential force and the normal force between the 

workpiece and the cutting tool [33]. This method requires expensive high-precision 

equipment (a dynamometer) with a high bandwidth and high sampling frequency 

capability to provide reliable measurements of the forces generated in micro-milling [2]. 

As any small amount of noise can give a false cutting force signal, the accurate 

measurement of very small cutting forces is a challenging issue.  

Coefficients of friction between different workpiece materials and cutting tools 

are reported by researchers [38] but it is unlikely to find the values for any specific 

material-cutting tool combination. Also, these would be the nominal values of the 

coefficients of friction that would not be of help for calculating the minimum chip 

thickness. Therefore, there is a real need for a faster and robust method for measuring 

the coefficient of friction at the grain scale inside the bulk. 

(a) 

500 nm 

(c) (b) 



In the research reported here, Son et al.’s model was used to calculate the minimum 

chip thickness. The parallel AFM scan method developed by Bhushan [41], as depicted 

in Figure 4, was used to calculate the coefficient of friction according to the following 

equation:  

                          

 (2) 

 

where :   is the coefficient of friction;  

21, WW   are the absolute values of changes in the normal force when the sample is 

travelling along the direction of the cantilever length forward and backward 

respectively;  

W  is the applied force between the tip and the sample; W ranges from 10 to 200 nN; 

L is the length of the cantilever;  

   is the vertical distance between the tip of the cantilever and point P (the fixed point 

of the cantilever). 

 

 

 

 

 

 

Fig. 4: Friction force in AFM parallel scan 

 

Force measurements were carried out on a XE-100 AFM from Park Systems [42]. 

Once the coefficient of friction and the cutting edge radius had been determined, the 
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normalised minimum chip thickness (λn) was calculated; λn is the minimum chip 

thickness divided by the tool edge radius and is a material dependent characteristic [32]. 

Figure 5 shows how the coefficient of friction varied over the AFM measurement 

range for both UFG and CG Cu. The average values of UFG and CG Cu were 

calculated to be 0.46 and 0.35, respectively. Accordingly, when r equals 2.5 μm, the 

calculated average minimum chip thickness was 0.39 μm with standard deviation (σ) = 

0.039 for UFG Cu99.9E and 0.48 μm with standard deviation (σ) = 0.094  for CG 

Cu99.9E while the normalised minimum chip thickness was 0.156 for UFG Cu and 

0.192 for CG Cu (Figure 6). This means that the cutting process started earlier in the 

case of the UFG Cu sample than for the CG workpiece, and thus a better surface quality 

would be expected after machining. Also, due to the significant variations in the 

minimum chip thickness over the scan area for the CG sample, the cutting process 

would be unstable and would result in highly fragmented chips and defects in the 

machined surfaces [40]. Conversely, the high homogeneity of the UFG Cu samples 

results in much less variation in the coefficient of friction and hence in the minimum 

chip thickness over the scanned area. Therefore the cutting process would be expected 

to be more stable and the defects on the machined surfaces to decrease.  
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Fig.5: Variation of the coefficient of friction over the AFM measurement range 

 

50403020100

0.7

0.6

0.5

0.4

0.3

Length (µm)

M
in

im
u

m
 c

h
ip

 t
h

ic
kn

e
ss

 (
µ

m
)

Minimum chip thickness for CG

Minimum chip thickness for UFG

 

Fig. 6: Minimum chip thickness variations over the AFM measuring range 

 

 

 

3.3 Micro-milling tests 

The machining response of CG and UFG Cu was investigated by carrying out 

slotting tests on a Kern HSPC 2216 micro-machining centre [43]. The polymer concrete 



mono-block frame of this centre absorbs high frequency vibrations much better than 

cast iron frames [20], which is very important in micro-milling. Fine grained tungsten 

carbide tools coated with TiAlN were used in the machining trials. In particular, 200 μm 

diameter end-mill cutters with two teeth, and 6° rake and 25° helix angles, were utilised 

in the experiments. Prior to the cutting tests, each cutter was imaged using a scanning 

electron microscope (SEM) to measure the approximate radii of the cutting edges as 

shown in Figure 7. It was found that these were in the range 2 to 2.5 μm.  

 

 

 

 

       

Fig. 7: SEM image of the cutting edge radius  

 

Table 1 shows the cutting parameters used in the milling trials.  A full factorial 

experimental design was adopted to study the effects of material microstructure on the 

resulting surface quality. The undeformed chip thickness was controlled by varying the 

feed rate per tooth in the slotting operation to achieve values close to the average grain 

size and in the range of the cutting edge radius. 

Cutting speeds were chosen that varied from the maximum available on the 

machine (40000 rpm) to a low value of 8000 rpm. Only one level of axial depth of cut 

(7 μm) was applied due to the limited effect of these parameters on the surface 

roughness in micro-milling [43]. Note that each set of cutting conditions tabulated in 

table 1 was carried out three times in order to prove the validity of the experimental 

results. 



 

Table 1 Cutting conditions  

 

 

 

 

 

 

4. Results and discussions 

The topography of the machined floor surface of the two workpieces was 

investigated. In particular, roughness and surface defects were examined to elucidate the 

relationship between the machining response and the material microstructure under 

different cutting conditions. 

 

4.1  Surface roughness 

The roughness of the machined surface, at the bottom of the micro-milled slots, was 

examined using a MicroXAM scanning white light interferometer from Phase Shift Inc 

[45] with a 40X optical magnification. A 194.15 x 155.65 μm area was sampled with 

about 1 μm resolution in the X-Y direction (normal to the optical axis) and sub-

nanometer resolution in the Z direction (along the optical axis). In particular, the 

average surface roughness Ra was measured at 5 different places along the centre line of 

each slot.  

For both materials the lowest surface roughness was achieved at the highest speed, 

40,000 rpm or 25 m/min, for all different settings as shown in Figure 8. The only 

exception was observed when the highest feed rate, 8 μm/tooth, and the mid-range 

Cutting parameters Values 

Depth of cut [μm] 

 

7      

Cutting speed [m/min] 25 15 5    

Feed rate [μm/tooth] 8 4 2 1 0.75 0.25 



speed, 24,000 rpm or 15 m/min, were used in the trials. Conversely, the highest 

roughness was measured at the lowest speed, 8,000 rpm or 5 m/min, for all the settings 

of the feed rate except for 1 μm/tooth and 2μm/tooth for CG and UFG Cu, respectively, 

when the surface quality was marginally better at the mid-range setting of the cutting 

speed.  

In the case of CG Cu, reducing the feed rate down to values of 1 μm/tooth led to an 

improvement in the surface finish. As shown in Figure 8, the roughness started to 

increase when the feed rate was 0.75 μm/tooth, which can be explained by the drastic 

change in the cutting conditions, in particular, ploughing rather than normal cutting. 

Further reduction in the feed rate to 0.25 μm/tooth led to an improvement in the surface 

finish which could be attributed to changes in the cutting conditions to smearing and 

burnishing. 

When the same micro-milling trials were conducted on the UFG Cu sample, a 

general improvement in the surface finish was observed compared to the CG material. 

Again, the roughness decreased when the feed rate was reduced. However, this time, the 

minimum roughness was achieved at a lower feed rate of 0.75 μm/tooth as shown in 

Figure 8. Thus, as far as the resulting surface roughness was concerned, there was a 

shift in the optimal cutting conditions from 1 μm/tooth for CG to 0.75 μm/tooth for 

UFG Cu99.9E. This change was associated with a reduction in the minimum chip 

thickness from 0.48 for CG Cu to 0.39 μm for UFG Cu. It is worth noting that there was 

a good agreement between the experimental results and the minimum chip thickness 

calculated based on the AFM measurement of the coefficient of friction. Also, the 

cutting process became very stable at feed rates 2-3 times the calculated minimum chip 

thickness in both the CG and UFG workpieces. The increase in roughness at a feed rate 

of 0.25 μm/tooth suggests that the cutting was already performed below the necessary 



minimum chip thickness, which led to a change of the cutting conditions from normal 

cutting to more ploughing. 
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Fig. 8: Roughness achieved under different cutting conditions for CG and UFG 

Cu99.9E 

 

 However, it was reported that an increase in the cutting speed could influence the 

machining response of a given material in two ways [32]. First, a higher speed will lead 

to an increase in the cutting temperature, which will have a softening effect on the 

material. Consequently, the material will tend to be more ductile and hence the 

minimum chip thickness also increases. Second, at higher speeds, strain hardening 

effects are also higher due to an increase in the strain and strain rate, which leads to a 

reduction in the minimum chip thickness. So, the minimum chip thickness is affected by 

the changing response of the material to variations of the cutting speed.   

 In both CG and UFG Cu99.9E, as seen in Fig. 8, there is no shift detected in the 

chip-loads at which the best surfaces were achieved over the cutting speed range. Thus, 

it can be concluded that the thermal softening and strain hardening effects are equally 

important and they cancel each other out. One might argue that the range of cutting 



speeds used in the experiments is not sufficiently large to observe any differences in the 

minimum chip thickness of Cu99.9E. However, the enhancement in the surface finish at 

high cutting speeds can be attributed to improvements in the material behaviour with 

reduced side flows and elastic recovery [15]. 

It should be noted that the cutting conditions under which the measurements of the 

friction coefficient were conducted were different from those used in the experiments. 

However, this method can be used to assess the relative improvements in materials’ 

homogeneity as a result of microstructure changes, and thus the associated with these 

reductions of required minimum chip thickness for stable micro machining. On the 

other hand, to be generally applicable to any material, further experimental studies are 

required to “calibrate” the predictions of the minimum chip thickness, especially the 

possible differences in material response between scanning and micro-cutting 

conditions has to be examined. 

 Figure 9 shows how the hardness of the machined surface changed with the feed rate 

for both materials. For CG Cu99.9E, the hardness remained constant at ~105 HV (under 

a load of 50 g), down to a feed rate of 1 μm/tooth, and then started to increase rapidly to 

~230 HV when the feed rate was reduced to 0.25 μm/tooth. This indicates an increase in 

the work hardening induced at feed rates below 1 μm/tooth and is associated with 

changes in the cutting conditions from normal cutting to ploughing at very low feed 

rates. For UFG Cu99.9E, the constant hardness level was ~125 HV. This level was 

observed at feed rates down to 0.75 μm/tooth. There was only a marginal increase in the 

hardness to ~130 HV at 0.25 μm/tooth. This again indicates changes in the cutting 

conditions at feed rates below 0.75 μm/tooth, from normal cutting to ploughing, but the 

changes were not as severe as in the case of CG Cu99.9E. 



 

Fig. 9: Hardness of the machined surface  

 

4.2 Surface defects 

The surfaces of the machined slots were inspected for defects in a scanning electron 

microscope. For CG Cu99.9E, as shown in Figure 10, the surface texturing and features 

observed at a low feed rate of 0.75 μm/tooth were prows (which are severely strain 

hardened bits of workpiece material), micro-cracks and floor burrs. As noted by other 

researchers, prows can be the result of a Built-Up Edge (BUE) that has broken off the 

tool rake face [46]. However, this is not the case in the machining trials conducted by 

the authors due to the relatively short cutting length. The strain hardening observed on 

the machined surfaces could be explained by the changes from normal cutting to 

ploughing at low feed rates due to the cutting edge radius being large compared with the 

chip-load, and also the relatively high minimum chip thickness required for CG 

Cu99.9E. In particular, as the chip-load decreased, the cutting tool geometry changed to 

a negative rake angle and, consequently, cutting was replaced by ploughing. At the 
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same time, the micro-cracks and the floor burrs could be attributed to the heterogeneity 

of the material microstructure at the grain level (see Figure 10) which led to changes in 

mechanical and metallurgical properties at the boundaries between individual grains. 

This material anisotropy led to significant variations in the minimum chip thickness and 

thus to chip fragmentation and formation of micro defects.   

          Conversely, in the case of UFG Cu99.9E the prows observed on the slot edges 

were minimal and only small burrs were formed. The reason for this was likely to be the 

high material homogeneity in comparison to CG Cu99.9E.  

 

 

 

 

    

 

 

 

 

Fig. 10: Machined floor surfaces for CG Cu99.9E at a feed rate of 0.75 μm/tooth and 

cutting speed of 5 m/min 

 

5. Conclusions 

Material microstructure effects on micro-milling process, i.e. on cutting conditions 

and the resulting surface quality, are studied in this paper. An experimental study was 

conducted to investigate the machining response of two workpieces with different 

material microstructures. One workpiece was “as received” CG Cu99.9E and the other 

Burrs 

Prows 
Micro-crack 

Void 



was UFG Cu99.9E refined employing the ECAP process. The investigation has shown 

that through a material microstructure refinement it is possible to improve significantly 

the cutting conditions in micro-milling and thus to minimise the process scaling down 

effects in machining micro features. This can lead to a reduction in surface roughness 

and surface defects which are highly dependent on material homogeneity in micro-

cutting. In particular, the following conclusions can be drawn from this investigation: 

 

 For both materials, CG and UFG Cu99.9E, a better surface quality was achieved at 

high cutting speeds and at feed rates 2 to 3 times higher than the calculated 

minimum chip thickness.  However, a significantly lower surface roughness was 

achieved at all cutting speeds and feed rates for UFG Cu99.9E compared to the CG 

material; the best result for the UFG material was Ra=0.037, while for the CG 

material it was Ra=0.057. This constituted a 35% reduction in surface roughness 

due to the UFG structure. Surface defects such as prows and floor burrs were very 

pronounced on the CG sample while on the UFG one they were hardly visible as a 

direct result of the material heterogeneity improvements. Also, there was a shift in 

the feed rate in achieving the minimum surface roughness from 1 μm/tooth for CG 

to 0.75 μm/tooth for UFG Cu99.9E, which again could be attributed to the material 

refinement. 

 

 For CG Cu99.9E, the micro-milled surface hardness achieved was 105 HV and 

remained constant down to a feed rate of 1 μm/tooth.  It started to increase rapidly 

as the feed rate decreased further. This indicates an increase in work hardening 

induced at rates below 1 μm/tooth, and suggests changes in the cutting conditions 

from normal cutting to ploughing at very low feed rates. For UFG Cu99.9E, there 



was a hardness increased to 125 HV due to the material refinement, which was 19% 

higher than for CG Cu99.9E. The hardness increased further at feed rates of 0.75 

μm/tooth and below, which indicates again changes in the cutting conditions, i.e. 

from cutting to ploughing as a results of the microstructure refinement and UFG 

Cu99.9E homogeneity improvements.  

 

 An AFM-based method was applied to assess the material homogeneity. It allows 

the relative homogeneity improvements as a result of the material refinements to be 

assessed and thus enables the initial setting up of machining parameters. In 

particular, the method allows the minimum chip thickness to be predicted and thus 

to have a robust cutting process while minimising the resulting surface roughness. 

However, it should be noted that in this homogeneity assessment method the cutting 

conditions in the AFM-based friction coefficient measurements were different from 

those in micro-milling. At present, this method can be applied to assess relative 

homogeneity improvements as a result of a material microstructure changes. 
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Notations 

 

 β  friction angle between a tool and uncut workpiece 

μ  coefficient of friction  

λm  normalised minimum chip thickness 

L   length of the cantilever  

l   vertical distance between the tip of the cantilever and point P (the fixed 

point of the cantilever) 

r  cutting tool edge radius  

tCmin  minimum chip thickness 

W  applied force between the tip and the sample; W ranges from 10 to 200 

nN; 

1W  absolute values of changes in the normal force when the sample is 

travelling forward along the direction of the cantilever length  

2W   absolute values of changes in the normal force when the sample is 

travelling backward along the direction of the cantilever length  
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Fig. 10: Machined floor surfaces for CG Cu99.9E at a feed rate of 0.75 μm/tooth and 

cutting speed of 5 m/min 

 

 

 

 


