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This paper makes two new propositions regarding the modelling of rarefied (non-equilibrium), 

isothermal gas flows at the micro scale. The first is a new test case for benchmarking high-

order, or extended, hydrodynamic models for these flows. This standing, time-varying shear 

wave problem does not require boundary conditions to be specified at a solid surface, so is 

useful for assessing whether fluid models can capture rarefaction effects in the bulk flow. We 

assess a number of different proposed extended hydrodynamic models, and we find the R13 

equations perform the best in this case. 

Our second proposition is a simple technique for introducing non-equilibrium effects 

caused by the presence of solid surfaces into the computational fluid dynamics framework. By 

combining a new model for slip boundary conditions with a near-wall scaling of the Navier-

Stokes constitutive relations, we obtain a model that is much more accurate at higher Knudsen 

numbers than the conventional second-order slip model. We show this provides good results for 

combined Couette/Poiseuille flow, and that the model can predict the stress/strain-rate inversion 

that is evident from molecular simulations. The model�s generality to non-planar geometries is 

demonstrated by examining low-speed flow around a micro-sphere. It shows a marked 

improvement over conventional predictions of the drag on the sphere, although there are some 

questions regarding its stability at the highest Knudsen numbers. 

 

1. Introduction 

 

A number of competing high-order equation sets have been developed in recent years in order to 

model rarefied gas flows within an efficient continuum-fluid framework (see Reese et al. 2003; 

Struchtrup 2005). These methods have shown promise, to varying degrees, in predicting certain non-

equilibrium behaviour in high-speed as well as micro-scale gas flows at a fraction of the 

computational cost of molecular-based simulations. However, good predictions of, for example, the 

viscous structure of one-dimensional shock waves have not always been matched by similarly 

compelling success in modelling micro-scale gas flows. The primary difficulty is that, unlike the shock 

wave case, micro gas flows tend to be dominated by the influence of solid bounding surfaces. The 

non-equilibrium introduced by a solid surface is qualitatively different to that generated by the 

variation of hydrodynamic variables alone; if the wall is assumed to behave like a Maxwellian emitter, 

a discontinuity is introduced in the molecular distribution function. 

It is no surprise, then, that continuum-based methods (such as those based on perturbation series 

solutions of the Boltzmann equation) are unable to resolve properly the region of local non-

equilibrium that exists up to one or two molecular mean free paths from the wall in any gas flow near 

a surface. Kogan (1969) demonstrated that the Chapman-Enskog technique (see Chapman & Cowling 

1970) does not provide a solution to the Boltzmann equation in this �Knudsen layer�, or �kinetic 

boundary layer�, and recently Lockerby et al. (2005a) compared Knudsen layer predictions from a 

number of current high-order equation sets and concluded that none could be considered both reliable 

and accurate. This is problematic for the future design and application of micro and nano flow devices 

because the momentum and energy fluxes from the region of the Knudsen layer to the boundaries have 

a critical influence on the overall flow behaviour. 

Although not definitively proving that continuum equation sets are incapable of accurately 

modelling near-wall behaviour, there is therefore strong evidence to suggest that � if continuum 
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equations are to be used at all � alternative phenomenological approaches may be as useful in these 

non-equilibrium regions (at least for practical engineering simulation purposes). We discuss this issue 

in greater depth in section 3 of this paper. 

Despite the difficulties associated with near-wall regions, there is no reason to believe that high-

order continuum equations cannot be used in regions of micro-scale gas flows away from the walls. 

The questions that arise are, therefore: outside the direct influence of solid bounding surfaces, can 

significant non-equilibrium exist in low-speed micro gas flows? If so, can this be resolved using 

higher-order continuum equations? In the following section 2 we focus on addressing these questions. 

 

2. The standing shear wave problem 

 

A simple test case, that does not involve solid bounding surfaces, is needed as an analogue of typical 

micro gas flows. To be relevant to many micro device applications, and for simplicity, it is desirable 

that this be low speed and isothermal1. Here we propose a standing shear wave: the one-dimensional 

shear flow generated by a temporally and spatially oscillating body force. In this case the body force 

(per unit mass) is of the form: 

yAeF ti

x βα cos= , (1) 

where Fx is the body force in a direction x (which is perpendicular to y), A the amplitude, ȕ the wave 

number, t is time, and Į the frequency. In this paper we restrict our attention to the flow response this 

forcing generates in an otherwise stationary and isothermal monatomic gas flow field. Note that this is 

different to the form of waves commonly used in the stability analysis of high-order continuum 

equations sets (see Struchtrup 2005; Greenshields & Reese 2007); it is simpler in two respects: first, 

the flow is isothermal, second, since the flow direction is perpendicular to the spatial variation, mass 

continuity is decoupled from the conservation of momentum. Furthermore, this standing shear wave 

case is arguably more relevant to micro flows, which tend to be shear-dominated, than waves where 

the flow direction is in the same direction as the flow variation (which are, perhaps, more relevant to 

the modelling of hypersonic flows). We propose that, bar a trivial linear shear flow, this is the simplest 

time-dependent micro-scale flow possible, so is a fundamental test case that can be used to compare 

the predictive performance of high-order continuum equations. 

 

2.1 Mathematical modelling using extended constitutive relations 

 

For convenience, the following non-dimensional variables are defined: 

yy β=� , 
RT

u
u =� , tRTt β=� , 

A

F
F x

x =� , 
RTβ

αα =� , 

RT

xy

xy βμ

τ
τ =� , 

RT

q
q x

x βμ
=� , 

(2) 

where u is the macroscopic velocity in the x direction, ȝ the gas viscosity, R the gas constant, T the gas 

temperature, xyτ  the shear stress and is the heat flux in the x direction. The �hat� symbol, which 

here denotes a dimensionless value, will now and subsequently be omitted to aid clarity. We also 

define a Knudsen number, Kn, as follows: 

xq

p

RTμβ
=Kn , (3) 

where p is the gas pressure. 

                                                           
1 by isothermal we mean here negligible temperature variation, although not necessarily negligible 
heat flux. 
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There are several different high-order continuum equation sets, although the majority stem from 

two alternative methods of solving the Boltzmann equation: the Chapman-Enskog series expansion 

and Grad�s 13 moment approach. Due to considerations of space, we restrict our attention here to the 

following more established equation sets: Navier-Stokes; Burnett (1935); super-Burnett; Grad (1949) 

13 moment; Struchtrup (2005) Regularised 13 moment. Space also precludes detailed descriptions of 

their derivation and relative merits, but these can be found in the relevant literature just cited, so we 

now consider their application to the standing shear wave problem for a monatomic gas. 

 

Navier-Stokes equations 

In this case, the linear Navier-Stokes x-momentum equation in non-dimensional form is: 

xF
y

u

t

u
=

∂
∂

−
∂
∂

2

2

Kn , (4) 

where the non-dimensionalised body force given in equation (1) is . For this study we 

restrict our attention to velocity perturbations about an otherwise stationary flow; the solution to 

equation (4) thus has the form: 

yeF ti

x cosα=

yeuu ti cosα= , (5) 

where u is the amplitude of the velocity field. Equation (4) then simplifies to: 

( ) 1Kn =+ uiα . (6) 

For a quasi-steady body force (i.e. Į=0), the Navier-Stokes model predicts the dimensionless 

amplitude of the velocity to be the inverse of the Knudsen number. 

 

Burnett and super-Burnett equations 

As detailed by Chapman & Cowling (1970), the Boltzmann equation can be solved by the 

Chapman-Enskog approach, which is a series expansion with the Knudsen number as the perturbation 

parameter. At first-order in Knudsen number, this method retrieves the Navier-Stokes equations (4); to 

second and third order, the Burnett and super-Burnett equations, respectively. 

The linear Burnett x-momentum equation in non-dimensional form is: 
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and the linear super-Burnett x-momentum equation in non-dimensional form is: 

xF
y

u

yt

u

yt

u

y

u

t

u
=

∂
∂

−
∂∂

∂
−

∂∂
∂

+
∂
∂

−
∂
∂

4

4
3

22

4
3

2

3
2

2

2

Kn
3

5
KnKnKn . (8) 

Note that the exact forms of the material derivatives that feature in the Burnett and super-Burnett 

stress tensors have been used (see Reese 1993 for further details). 

Burnett solutions to the standing shear wave problem (restricting, as before, our interest to 

velocity perturbations from an otherwise stationary flow) are therefore: 

1)Kn-Kn( 2 =+ uĮiĮi , (9) 

and the super-Burnett solution is: 

1Kn
3

5
KnKnKn 3322 =⎟

⎠
⎞

⎜
⎝
⎛ −−−+ uii ααα . (10) 

 

Grad�s 13-moment equations 

An alternative to the Chapman-Enskog method of solving the Boltzmann equation was proposed 

by Grad (1949). He expanded the molecular distribution function as a series of Hermite tensor 

polynomials, with variable parameters, around the Maxwellian equilibrium state. To evaluate the 

distribution function at second-order, moment equations are needed for 13 dependent variables in the 
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conservation equation set. This process led to what are termed Grad�s 13 moment equations, which for 

this one-dimensional case are somewhat more complicated than the Burnett and super-Burnett 

equations, and now involve a coupling of the shear stress with a parallel heat flux. The coupled set of 

equations is: 
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(11) 

For a standing shear wave generated about an otherwise stationary and isothermal flow, Grad�s 

equations (11) reduce to the following linear set: 

1=+ iiu xyτα , 
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(12) 

where yei ti

xyxy sinαττ =  and yeqq ti

xx cosα= . Equations (12) can be solved simultaneously to 

obtain u . 

 

Regularized 13-moment equations 

Struchtrup (2005) and Struchtrup & Torrilhon (2003, 2007) proposed Regularised 13 moment 

equations (which we denote here as the R13 equations), which are similar to Grad�s equations but 

include additional second-order terms in the field equations for stress and heat-flux, i.e. 
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(13) 

Again, for the standing shear wave of equation (1) (in stationary and isothermal base-flow conditions), 

this reduces to a set of relatively simple linear equations: 

1=+ iiu xyτα , 
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(14) 

which can be solved simultaneously to obtain u . 

In this analysis we considered velocity perturbations from a stationary and isothermal flow field, 

as described by equation (5). However, the general solution requires the addition of the 

complementary function, which is a solution to equations (4), (7), (8), (11), and (13) in the unforced 

case, i.e. Fx=0. For example, the steady-state general solutions for the Navier-Stokes, Burnett, and 

Grad�s 13 moment equations are:  
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21cos CyCyuu ++= . (15) 

For the super-Burnett equations, the general solution is: 
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and for the R13 equations: 

⎟⎟
⎠
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5
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The integration constants, , relate to characteristics of the one-dimensional flow field that are 

independent of the body forcing, F

41−C

x. These general solutions indicate that in the steady-state a uniform 

velocity field, as well as a constant rate of strain, can be supported within the flow field. Interestingly, 

equation (16) shows that the super-Burnett equations can also support, in the steady state, a spatially-

oscillating velocity field with a dimensional wavelength of approximately one half of a mean free 

path. There is, then, according to the super-Burnett equations, a spatial wavenumber for which there is 

no viscous damping. 

 

2.2 Results and comparison with a kinetic theoretical model 

 

In the absence of any experimental data for the standing shear wave problem, in this paper we use 

time-dependent solutions to the BGK Boltzmann equation as an independent comparison. We obtained 

these solutions using a Discrete Velocity Method (DVM) similar to that used by Valougeorgis (1988). 

This numerical scheme, which uses Gaussian quadrature to integrate in velocity space, has been tested 

extensively against a host of problems in rarefied gas dynamics and has proven to be both accurate and 

highly efficient (see Valougeorgis & Naris 2003; Naris et al. 2005; Naris & Valougeorgis 2005). For 

solutions to the standing shear-wave problem, a quasi one-dimensional spatial treatment is adopted 

with sinusoidal variations in y having the same wavenumber as the imposed body force. This implies a 

stationary base flow field, corresponding to the assumptions of our analysis in the previous section.  

While it has limitations, the physical basis of the BGK Boltzmann model is appropriate for the 

linear and isothermal flows we are considering. It is important to stress that we do not attempt to 

assess the accuracy of the physical model underpinning the BGK equations here; our intention is to 

compare the predictive capabilities of competing continuum equation sets relative to a more 

computationally-expensive molecular technique. 

 

The quasi-steady case 

We first consider a quasi-steady wave, i.e. Į=0. Figure 1 shows the amplitude of the shear wave, 

u , predicted by the BGK model and all five continuum equation sets for Knudsen numbers in the 

range 0.1 to 1. The Navier-Stokes predictions depart significantly from the BGK results; by Kn=1.0 

the Navier-Stokes predicted amplitude is less than 50% of the BGK result, indicating that even for this 

type of micro flow an alternative to the conventional fluid mechanics model is certainly needed. 

However, the Burnett solution offers no improvement, coinciding with the Navier-Stokes results (as 

can be confirmed by inspection of equation 9 with Į=0). The super-Burnett solution is close to the 

BGK result at moderate Knudsen numbers, but predicts seemingly non-physical amplitudes at higher 

Kn; in fact, the solution has an asymptote at a Knudsen number around 0.8, corresponding directly to 

the wavenumber with no damping that we discussed at the end of section 2.1. Grad�s equations do not 

appear to have the accuracy of the super-Burnett equations at low Kn but do provide reasonable 

predictions over the range of Kn. The R13 equations produce the best results: close correlation with 

the BGK model at moderate Kn, and acceptable accuracy at higher values. These results therefore 

support the claim of Struchtrup & Torrilhon (2003) that the R13 equations are �� in between the 
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super-Burnett and Grad�s 13 moment equations in as much as [they] � keep the desirable features of 

both�. 

 

Time-varying shear waves 

While our results for the quasi-steady case show that, for Kn≈0.1, the Navier-Stokes and the BGK 

models agree, we should extend the analysis to the time-dependent case. Figures 2 and 3 show that, for 

fixed Kn=0.1, the BGK model results closely match the Navier-Stokes solution for all frequencies 

considered, both in amplitude and phase lag. There does not, then, appear to be an independent non-

equilibrium effect introduced by the body forcing frequency at low Kn. 

However, the form of the high-order continuum equations suggests that there may be non-

equilibrium effects introduced by time-dependency at higher Kn. Figures 4 and 5 show results for the 

wave amplitude and phase lag, respectively, at a fixed Kn=0.5. In the case of the wave amplitude, the 

Navier-Stokes equations appear to be no better or worse at higher frequencies � the proportional 

difference between the Navier-Stokes and BGK results remains relatively constant. The BGK model 

predicts that non-equilibrium effects tend to make the shear wave lag behind the driving force. In both 

figures it is striking that the Burnett and super-Burnett results are quite poor, whereas the R13 

equations accurately reproduce the BGK results over the range of frequencies considered. 

Our final set of standing shear wave results are for a fixed frequency oscillation, Į=1.0. Figures 6 

and 7 show the wave amplitude and phase lag variation over a range of Kn. It is interesting to note that 

Figure 6 shows the BGK model predicts a slight increase in amplitude with increasing Kn, which is 

qualitatively different behaviour to the quasi-steady case. Again, the Burnett and super-Burnett 

equations are seemingly non-physical at higher Kn, whereas the R13 equations provide sensible and 

accurate results over a wide range of Kn. 

Note that our analysis and results in this section, for a standing shear wave, are equivalent to 

those for a travelling shear wave of speed α . In that case, the non-dimensional body force, velocity 

response, shear stress, and heat flux would be ,  )( tyi

x eF α+= )( tyieuu α+= , )( tyi

xyxy e αττ += , and 

)( tyi

xx eqq α+= , respectively. The remainder of the analysis then follows identically, as do the results. 

 

  

3. Knudsen layers 

 

While the standing shear wave problem provides both a good illustration of non-equilibrium arising in 

a micro flow, and a simple test example for competing sets of high-order equations, any practical 

application of non-equilibrium flow models needs also to be able to capture the nonlinear stress/strain-

rate behaviour within the Knudsen layer, as we outlined in section 1. The Knudsen layer is also an 

interesting problem because, while its structure has been extensively investigated and is well-

understood from a kinetic theoretical viewpoint (see, e.g., Kogan 1969; Cercignani 1990; Sone 2002), 

high-order continuum equations generally have difficulties in predicting the extent of the layer � 

which kinetic theory predicts is some 1.4 molecular mean free paths into the flow from any surface. 

For example, the R13 equations, which performed well for the standing shear wave problem in section 

2, predict a Knudsen layer of around twice this extent (see Lockerby et al. 2005a). There are also 

difficulties that arise in selecting the additional wall boundary conditions required for uniquely solving 

higher-order equations sets (although the recent work of Struchtrup & Torrilhon 2007 shows 

significant advances in this area). 

Despite the generally poor ability of high-order equations to accurately capture the Knudsen 

layer, a continuum-fluid formulation (in conjunction with slip boundary conditions) is still preferred, 

particularly for engineering applications, as it would offer distinct and practical computational 

advantages over current molecular methods. The issue is, therefore, how to develop or adapt a 

continuum-fluid model to incorporate the most important non-equilibrium Knudsen layer effects. 
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3.1 Continuum-fluid models of slip 

 

Integral to any calculation of the Knudsen layer is the model for gas slip at the surface. Maxwell�s 

(1879) slip boundary condition relates velocity slip to the shear stress at a gas-surface interface. 

Although his derivation was crude in comparison to modern kinetic theory, this boundary condition 

performs surprisingly well. It is partly owing to this, and its simplicity, that it still endures in rarefied 

gas dynamics (see Lockerby et al. 2004). This boundary condition, for isothermal cases, has the form: 

μ
τλ

σ
σ−

−=
2

slipu , (18) 

where uslip is the velocity slip, τ is the shear stress, μ is the viscosity, σ ̓is the tangential momentum 

accommodation coefficient (equal to one for perfectly diffuse molecular deflection, and zero for 

purely specular deflection) and λ is the mean free path, defined as: 

pρ
πμλ

2
=  , (19) 

where ȡ is the density, and p is the pressure.̓ 

However, one of the main shortcomings of Maxwell�s boundary condition is its inability to take 

into account the nonlinear stress/strain-rate relationship characteristic of the Knudsen layer (as 

depicted schematically in Figure 8). As a way of compensating for this, modern slip boundary 

conditions (see, e.g., Kogan 1969; Cercignani 1990; Sone 2002) use slip coefficients that predict 

greater than the actual slip at the boundaries. This �fictitious� slip, as it is sometimes called, ensures 

that the linear Navier-Stokes model is accurate beyond the Knudsen layer, but not within it (i.e. the 

diagonal dashed line in Figure 8). 

The Maxwell condition is often supplemented by a second-order contribution to the slip, i.e. 

2

2
2

21
d

d

d

d

x

u
A

x

u
Auslip λλ += , (20) 

where x is in a direction normal to, and away from, the surface, and A1 and A2 are slip coefficients. 

Cercignani (1990) and others have calculated the values of these slip coefficients from numerical 

solutions to the BGK Boltzmann equation. For a monatomic and isothermal gas at low Knudsen 

number: 

A1=1.1466 and A2= �0.9576, (21) 

(this further assumes perfectly diffuse reflection of molecules at surfaces, i.e. ı=1). 

Using the same DVM for the BGK Boltzmann model that we used in section 2.2, we compare in 

Figures 9 and 10 BGK solutions for isothermal Couette and Poiseuille channel flows with Navier-

Stokes solutions using the boundary conditions (20) with (21). These results are for Kn(=Ȝ/H)=0.05, 

where the characteristic length, H, is the channel depth. As expected, a near-precise agreement is 

shown; it is only near to the walls that any inaccuracy is evident. Note that all the results that follow 

are non-dimensionalised using ȝ, Ȝ and p, all of which are constant for the cases presentedҗ. 
If the average error in the Navier-Stokes velocity profile compared to the BGK result may be 

defined as: 

( )2

max

err

1
iBGKi

BGK

uu
u

u −= , (22) 

where ui is the non-dimensional velocity of the Navier-Stokes solution at the ith grid point (the 4000 

grid points of our BGK and Navier-Stokes simulations coincide), then for these Couette and Poiseuille 

cases the average errors are 0.6% and 1.2%, respectively. This is a very reasonable degree of accuracy 

considering the computational savings afforded by using a Navier-Stokes solver. (For the one-

dimensional calculations here, the computational expense of both the BGK and Navier-Stokes 
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solutions is trivial. However, for complex geometries, such as those common in 3D microfluidic 

device design, the difference in computational requirements would be considerable.) 

However, the accuracy of Navier-Stokes slip solutions rapidly diminishes at higher Knudsen 

numbers. For example, at Kn=0.5 the average errors in the Couette and Poiseuille flow slip solutions 

are 10% and 33%, respectively. So it is clear that there is a relatively low Knudsen number limit up to 

which the Navier-Stokes model with slip boundary conditions can be confidently applied. 

The two fundamental problems with using �fictitious� slip boundary conditions with the Navier-

Stokes constitutive relations are: (a) that some portion of the flow domain is therefore necessarily 

fictitious, and at transitional Knudsen numbers (i.e. Kn=0.1~1), where the Knudsen layers are 

relatively much larger, this error becomes unacceptable; (b) that for moderate transitional Kn, the 

linear stress/strain-rate relationship is invalid, not just near the walls, but for the entire channel. For 

example, a BGK solution of Couette flow with Kn=0.5 shows that nowhere in the flow are the linear 

Navier-Stokes constitutive relations less than 16% inaccurate. This inaccuracy is inherent in the 

foundational axioms of linearity of the Navier-Stokes constitutive relations, and is irrespective of the 

amount of slip introduced at the boundary. 

However, we here propose an adaptation to the Navier-Stokes model capable of addressing both 

of these problems. This new model has two components: micro slip coefficients, which model the 

actual slip at gas-surface interfaces; and a wall-distance-dependent scaling of the Navier-Stokes 

constitutive relations. It is important to stress that our new model, for rarefied monatomic gas flows, is 

calibrated with precisely the same BGK result as used in the generation of the standard second-order 

slip boundary conditions (20) with (21). Any generality is therefore left intact. 

 

3.2 Near-wall scaling of the constitutive relations 

 

For ease of implementation, we seek a simple functional relationship between the departure from 

Navier-Stokes behaviour and the wall-normal distance from a surface. This concept is similar to the 

�wall-function� proposed in Lockerby et al. (2005b). However, there are some marked differences in 

the model we propose below, most notably the presence of a second-order contribution to the near-

wall scaling (second-order, in that it is dependent on a local Knudsen number) and a more accurate 

functional form (we also do not continue to use the phrase �wall-function� in the present paper, to 

avoid confusion with those wall-functions associated with turbulence modelling). There are some 

similarities between our method and effective viscosity approaches, such as the one proposed by Guo 

et al. (2007). 

For a simple 1D flow, we propose scaling the stress/strain-rate relationship as follows (the scaling 

for a 3D flow is essentially similar, see equations 31 to 34 below): 

[ ])�()�(1
d

d
21 xkx

x

u
Ψ+Ψ+−=

μ
τ

, (23) 

with the functions Ψi defined by: 
xcb

exax
�

ii
ii�)�( =Ψ , (24) 

where  is the perpendicular distance from a wall surface (nondimensionalised with Ȝ) and positive in 

the direction away from the surface; a

x�

i, bi and ci are coefficients to be determined; and the variable k 

is: 

x
k

�d

d1 τ
τ

= . (25) 

This flow-dependent variable, k, is in essence a form of local Knudsen number, and is introduced to 

provide a second-order component to the constitutive scaling; similar, in a sense, to the second-order 

slip term featuring in equation (20). Interestingly, it can assume positive values, as well as negative, 
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suggesting that a positive (or negative) strain-rate might be possible in the presence of a positive (or 

negative) stress. This qualitatively non-Newtonian behaviour will be examined below. 

Values for the coefficients ai, bi and ci are optimised using a simple genetic algorithm to most 

accurately reproduce the two low-Kn BGK results presented in Figures 9 and 10, resulting in: 

a1 = 0.1859, b1= �0.4640, c1= �0.7902; 

a2 = 0.4205, b2= �0.3518, c2= �0.4521. 
(26) 

Although these values are given to four significant figures, our results that follow are reasonably 

insensitive to their exact values. For example, for a Poiseuille flow of Kn=0.2 (based on channel 

depth), a 5% alteration in any of the values listed in equations (26) results in less than 1% difference in 

the additional mass flow rate that occurs in the rarefied case.  

Our scaling may be implemented conveniently within an existing computational fluid dynamics 

(CFD) code by defining a variable viscosity to effect the desired scaling. It is important to emphasize, 

however, that nothing artificial is being introduced into the subsequent Navier-Stokes calculations. 

The actual viscosity remains unaltered. Furthermore, the velocity profile correction that results is not 

at the expense of an inaccuracy in the prediction of stress (as will be demonstrated later); it is only the 

stress/strain-rate relationship that is being altered, and this is a reflection of what happens in reality. 

The functional form given in equation (24) is qualitatively different to that proposed by Lockerby 

et al. (2005b) and Guo et al. (2007), and has been chosen to more accurately reproduce the Knudsen 

layer�s actual structure; it allows for an indefinitely steep profile in the most inner regions of the 

Knudsen layer, and a more gradual decay in the outer regions. It also allows for a second-order 

contribution to the Knudsen layer. Interestingly, our model predicts an infinite scaling at the wall 

(since the coefficients b1 and b2 are negative), and therefore an infinite rate of strain. Although this 

might, at first, seem counter-intuitive, it is in accord with kinetic theory analysis of the Knudsen layer 

by Sone (2002). In practice, this has limited consequences on the implementation of our method since 

the function is evaluated within the first fluid cell close to a wall (i.e. between the surface and first 

fluid grid points). As such, there is no singularity to reckon with in the computational scheme. 

Difficulties only arise if the spatial resolution is particularly high; then derivatives become large and 

the errors associated with their evaluation significant. To avoid this, very near-wall scaling values (e.g. 

<0.05) can be obtained by linear extrapolation from a value that is close to the wall but which does 

not have excessively large derivatives (an example of this technique is discussed below). 

x�

 

3.3 Combined effect of two parallel walls 

 

At transitional Knudsen numbers it is likely that surfaces in close proximity will have a coupled effect 

on the departure of the flow from Navier-Stokes behaviour. Here, as an initial model, we assume that 

in parallel wall cases their contributions can be combined linearly. This rather crude assumption is 

based on the simple premise that the direct influence of a wall is restricted to molecules travelling 

away from its surface. Since, in steady flow cases, this set of molecules is half the total number, the 

opposite wall�s influence can be considered separately, and therefore added to this. In cases involving 

parallel walls the combined scaling function is then: 

[ ])�()�()�()�(1
d

d
2211 bbaaba xkxkxx

x

u
Ψ+Ψ+Ψ+Ψ+−=

μ
τ , (27) 

where  and  are the distances measured normal to the first and second wall surfaces, 

respectively. It is important to note that this would make no appreciable difference to the low-

Knudsen-number cases in Figures 9 and 10 because of the relatively large distance between the solid 

surfaces. It is highly likely that for non-planar cases this linear combination of Knudsen layer effects 

will need to be reconsidered in a more rigorous manner.  

ax� bx�

 

3.4 Micro slip 
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In our new model we aim to model the actual (sometimes referred to as �micro�) slip, as opposed to a 

fictitious value of slip. So we propose here boundary conditions for the micro slip in a similar form to 

those used for fictitious slip, as in equation (20), but in terms of stress rather than strain-rate. For 

ordinary Navier-Stokes simulations this difference is of no consequence, but this is not the case for our 

model. Lockerby et al. (2004) showed that Maxwell�s slip boundary condition should be expressed in 

terms of stress rather than strain-rate, and so here we extend this to second order:  

x
AAu slip

d

d2

21

τ
μ
λ

μ
τλ −−= . (28) 

We obtain the values of the slip coefficients A1 and A2 directly from the low-Kn BGK solutions 

presented in Figures 9 and 10: 

A1=0.798 and A2= �0.278. (29) 

This completes our micro-slip Navier-Stokes model with near-wall scaling of the constitutive 

relations. 

 

3.5 Results and comparison with a kinetic theoretical model 

 

We now compare our new model to both conventional second-order slip solutions and BGK results at 

transitional Knusden numbers. This represents a real test of both the conventional second-order slip 

model (equation 20) and our new model, since both are based upon the same low-Kn BGK data.  

It is important to be clear that we are not investigating the appropriateness of the physical model 

underpinning the BGK Boltzmann equation itself; we are only interested in whether the standard and 

our current models can achieve the same predictions. As such, we do not present solutions to the 

Boltzmann equation for the same test cases; however such solutions can be used to refine the 

calibration of our proposed model. Although not used in our simulations presented here, the model 

coefficients for a hard-sphere gas (calibrated using the data of Ohwada et al. 1989a,b) are: a1 = 0.1824; 

b1= �0.5101; c1= �1.051; a2 = 0.2001; b2= �0.7193; c2= �0.652; A1=0.8055; and A2= �0.1452. The 

first-order coefficients (A1, a1, b1, c1) are very similar to those from the BGK model; the disparity in 

the second-order coefficients (A2, a2, b2, c2) reflects the inaccuracy of the BGK model unless adjusted 

to be applicable to hard spheres (Hadjiconstantinou 2003).   

The results that follow are non-dimensionalised using ȝ, Ȝ and p, all of which are constant for the 

cases presented җ (e.g. velocity is non-dimensionalised using μλ /p , and shear stress using p). The 

simulations conducted here are trivial in terms of computational requirements, and far more numerical 

grid points have been used than necessary for an acceptably accurate result; all simulations in this 

section have been performed using 4000 grid points. To give an indication of grid dependency using 

our model, for Poiseuille flow (Kn=λ/H=0.1), 50 grid points provide a prediction of mass flow rate 

within 2% of that obtained using 5000 grid points.  

 

Couette flow 

Figure 11 shows the velocity profiles for a high-Kn Couette flow (Kn=λ/H=1.0) predicted by our 

new model, the standard slip model, and the BGK equation; the opposing non-dimensional wall 

velocities are equal to �1 and 1. Our model provides strikingly close agreement to this BGK solution. 

Figure 12 shows the average velocity error (defined in equation 22) for the no-slip solution, the slip 

solution, and our model over a range of Knudsen numbers. The slip solution has an average error of 

approximately 1% for Kn=0.07, whereas our model can reach Kn=2.0 before showing the same level 

of error; this clearly represents a significant extension of applicability of the continuum-fluid model. 

Our model�s accuracy in predicting the Couette velocity field is not, as initially might be 

assumed, at the expense of the stress field. The stress is constant throughout the channel, and 

predictions of our model are compared to those of the slip model and the BGK solutions in Figure 13. 

10 
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Clearly, both the slip model and our current model very accurately predict the stress in the channel. 

For a Knudsen number as high as Kn=2.0 the stress predictions are within 5% of the BGK solution for 

our model and within 6% for the slip model. 

 

Poiseuille flow 

The second-order elements of the slip model and our current model are not tested in Couette flow, 

as it is a constant-stress problem. So we now consider planar Poiseuille flow at transitional Knudsen 

numbers. For these simulations we have chosen a non-dimensional streamwise pressure gradient equal 

to Kn. 

Figure 14 shows the velocity profiles for a high-Kn Poiseuille flow (Kn=λ/H=1.0) predicted by 

our model (with the same coefficients, equations 26), the slip model and the BGK code. The current 

model provides a great improvement on the slip solution: the strain-rate variation of the velocity 

profile predicted by our model is very close to that of the BGK solution, suggesting that in this case it 

is the micro slip coefficient that is introducing most of the error, rather than the scaling of the 

constitutive relations.  

The average error of the velocity profile is plotted in Figure 15 for Knudsen numbers up to 2.0. 

The slip model shows an average error of 5% at a Knudsen number as low as 0.13, whereas our model 

can reach Kn=0.62 before showing the same average error. Our model�s improvement on the slip 

solution is therefore marked; this is reinforced by Figure 16, which shows predicted normalized mass 

flow rates for Knudsen numbers up to 1.6 for the various models and the BGK code. The �Knudsen 

minimum� in the flow rate is captured much more accurately with our model as compared to the slip 

solution, although this minimum does appear to occur at a significantly lower Knudsen number 

(Kn~0.4) than the BGK model predicts (Kn~0.9). (Note that in this figure the Knudsen minimum 

appears quite slight; it would be more accentuated if the graph was extended to higher Kn.) 

 

Couette/Poiseuille flow 

In developing slip models and extensions to Navier-Stokes solvers, the hope is that they might be 

applicable to general geometries. The model we have proposed is no less general in its derivation than 

the conventional slip model we have used for comparison. An investigation into both models� 

accuracy in cases other than Couette and Poiseuille flows is therefore required.  

For a combined Couette/Poiseuille test case we have chosen a non-dimensional pressure gradient 

equal to Kn and opposing wall velocities equal to �1 and 1. Figure 17 shows the velocity profile of this 

combined flow at Kn=1.0. Again, our current model (with the same coefficients) provides a much 

better prediction than the conventional slip model. The average error of the velocity profile is plotted 

in Figure 18 versus Knudsen number. The slip model shows a 5% average error at a Knudsen number 

of 0.14, whereas our model can reach a Knudsen number of 0.67 before showing the same level of 

error. 

It was mentioned in section 3.2 that our model might predict regions of positive (or negative) 

strain-rate that are coincident with positive (or negative) shear stress. This qualitatively non-

Newtonian behaviour is noticeable in Figure 17. The shear stress in the entire flow is negative, and 

consequently, the Navier-Stokes slip solution predicts a positive rate of strain throughout the channel. 

However, the BGK solution clearly predicts an inversion in the rate of strain at x>0.85H; an 

unexpected phenomenon, but captured by our new model quite well. 

 

3.6 Results and comparison for micro-sphere flow 

 

Our model was developed using planar case data, so it should be assessed for its usefulness in 

predicting non-planar situations; we therefore investigate creeping flow past a micro sphere. 

11 
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The oil droplet experiments of Millikan (1923) demonstrated that the classical Stokes drag 

prediction of flow past a sphere needed correcting as the Knudsen number increased. Allen & Raabe 

(1985) conducted a similar but improved experiment and used their data to obtain a drag formula, 

dependent on Knudsen number (based on sphere radius), as follows: 

( ) 1/(1
−−++= Kn

S eKnDD γβα , (30) 

where Ds is the Stokes drag, Kn is the Knudsen number based on sphere radius, α =1.142 ± 0.0024,  β 

=0.558 ± 0.0024, and γ =0.999 ± 0.0212. This expression will be used as our experimental benchmark 

to which we compare the predictions of our model, alongside conventional slip solutions. 

 

The governing equations 

The 3D low-speed incompressible Navier-Stokes momentum equations with our constitutive-relation 

scaling are as follows: 

( ) UUUP ∇⋅Φ∇+∇Φ=∇Φ⋅∇=∇ μμμ 22 2 , (31) 

where  

( )[ ]T
UUU ∇+∇=∇

2

1
, (32) 

and 

[ ] 1

21 )�()�(1
−Ψ+Ψ+=Φ nkn , (33) 

with  being the non-dimensional surface-normal distance from the nearest wall surface, and the 

functions Ψ
n�

i and their coefficients are, again, those in equations (24) to (26). The variable k is 

calculated as follows: 

n
k

�d

d1 τ
τ

= , with )( �� Ȇ⋅⋅= nx iiτ , (34) 

where  is the stress tensor,  is a unit vector in the wall-normal direction and  is a unit vector 

perpendicular to  in a direction that gives maximum shear stress, τ. Our constitutive-scaling model 

as a whole can indirectly (although will not necessarily) affect the shear stress field, which in turn will 

alter k, producing a weak coupling effect. 

Ȇ ni � xi �

n�

A schematic of the sphere and the coordinate system adopted is shown in Figure 19. The 

symmetry of the problem indicates a solution independent of θ, and with no θ-component of velocity, 

i.e.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

φU

U

U

r

 ; 0=
∂
∂

=
∂

∂
=

∂
∂

θθθ
φ pUU r . (35) 

Furthermore, since this is creeping flow (i.e. very low Reynolds number), variations in flow variables 

can be assumed to have the following form, with dependence only on r: 

φφ cos)(),( rurU rr = , 

φφ φφ sin)(),( rurU = , 

φφ cos)(),( rpprP += ∞ , 

(36) 

where is the free-stream pressure.  ∞p

The continuity and momentum equations are then: 

r

UU

rr

U

r

U rr
φ

φ
φφ cot12

0 +
∂

∂
++

∂
∂

= , (37) 
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⎠
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∂
∂

+
∂

∂
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+
r

UU

rr

U

r

r φφ

φ
μ 1

. 

(39) 

Note that Φ  has dependence only on r, which is equal to n�λ  (the variable k, which needs to be 

evaluated for Φ , is also dependent only on r despite the shear stress, τ ,  varying with sinφ). After 

making substitutions for ,  and P given in equations (36), and after eliminating urU φU r from the 

momentum equations, equations (37) to (39) become: 

dr

dur
uu r

r
2

−−=φ , (40) 

dr

du

dr

d

dr

du

rdr

ud

dr

dp rrr Φ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Φ= μμ 2

4
2

2

, (41) 
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Φ
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2

2

2

2

3

3

2

2
3

2
μμ . (42) 

Then differentiating equation (42) and substituting into equation (41) (to eliminate pressure) gives the 

following fourth-order ordinary differential equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

Φ
+⎟⎟

⎠

⎞
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⎛
−++Φ=

dr
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2
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3
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42
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4
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⎝

⎛
+

Φ
+

dr

du
r
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udr

dr

d rr

2

22

2

2

2
. 

(43) 

This is solved with the following boundary conditions: 

∞=∞= Urur )( , 

0)( == arur , 

0)( =∞=r
dr

dur , 

a

u

a

u
ar

dr

du slipr
22

)( =−== φ
, 

(44) 

 

where a is the radius of the sphere and is the free-stream velocity. Note that in the final boundary 

condition given in equations (44), the gradient of  at the surface of the sphere is related to the slip 

velocity via the continuity equation (40). 

∞U

ru

The surface shear stress, τ, and surface normal stress, σ, are as follows: 

φτφτ sin�)( = ,  φσφσ cos�)( = , (45) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Φ=

dr

du

dr

udr rr

2

2

2
� μτ , ⎟

⎠
⎞

⎜
⎝
⎛Φ−=

dr

durμσ 2� . (46) 
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These expressions, combined with the pressure that is obtained from equation (42), can be used to 

evaluate the total drag force, F, on the sphere: 

( ) sPF
S

d∫ −+= τσ , (47) 

where S is the surface of the sphere and θφφ ddsind 2as = . By substituting equations (45), and the 

pressure equation in equations (36), into equation (47) our final expression for the drag force is 

obtained: 

( )τσπ �2�
3

4 2 −+= paF . (48) 

Note that, numerically, the surface stresses and surface pressure may be evaluated by one-sided finite 

differences. 

 

Numerical procedure 

The domain is semi-infinite, and so the following mapping is used: 

Lar

L

+−
=η , (49) 

where η is the mapped variable (η =1 at the sphere surface, η =0 at infinity) and L is a scaling factor. 

The derivatives featuring in equation (43) can be rewritten in terms of η as follows: 
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3

4
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4

8

4

4 243612
. 

(50) 

We discretise the resulting differential equation using centred finite differences and solve it using 

a standard linear equation solver. For all computations presented here, 4000 grid points have been 

used, but acceptably accurate results can be obtained with far fewer points. For Kn=0.1, a simulation 

with

η

 100 grid points obtains a prediction of drag within 2.5% of that obtained using 4000 grid points; a 

simulation with 300 grid points, within 1%.  

One minor numerical complication arises from the derivatives of the function ĭ tending to 

infinity at the surface of the sphere. To circumvent the numerical problems this causes, the function is 

linearly extrapolated back towards the surface for values of n <0.05. This extrapolated region is very 

small and has negligible effect on the solution other than to stabilise it. 

 

�

Results 

Our model is compared with the experimentally-fitted function of equation (30), a first-order slip 

olution due to Basset (1888) (A1=1; A2=0), a second-order slip solution given by Cercignani (1990) 

66; A = ۣ 0.9576), and BGK results from Lea & Loyalka (1982). Our results for drag, 

s

(A1=1.14 2

normalized by Stokes� continuum drag prediction (F=6πμaU∞), are shown in Figure 20. 

Aside from a marginal over-prediction at low Knudsen numbers, our model provides significantly 

better predictions than the second-order slip model, and much better predictions than Basset�s classical 

14 



accepted for publication in the Journal of Fluid Mechanics 

slip 

eded to establish whether 

this 

f different continuum-type equations, each purporting to capture non-
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simu
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Knudsen layer that is important in non-isothermal flows; 

 collision 

 

The t  a well-documented DVM 

ode that generated the BGK results presented in this paper. We also thank the referees of this paper 

model, when compared to both the experimental data and the BGK result. Considering that the 

second-order slip solution also has fictitious contributions to the flow velocity near to the wall (as we 

noted in section 3.1), our current model is therefore greatly to be preferred. 

One caveat to this latter statement is that at much higher Kn (greater than about 0.6), and for this 

configuration, our model meets some stability problems. More work is ne

is a problem with the current implementation strategy, or an inherent instability in the model. 

 

4. Discussion and conclusions 

 

We have tested a number o

e

ing standing shear wave. While this is an ideal case, it has the distinctive advantage of separating 

rarefied gas effects in the bulk flow from those due to solid bounding surfaces. Another advantage is 

that the analysis is relatively simple, so competing continuum-type models can be evaluated 

straightforwardly. We showed that the R13 equations, proposed by Torrilhon and Struchtrup as a 

development of Grad�s original 13 moment technique, provide the best model among those we tested. 

More complicated cases than this ideal benchmark may, however, require efficient computational 

methods in order to make the R13 equations a tractable design tool; it is unclear at present how 

computationally demanding calculations of 3D flows in complex geometries may be for any high-

order continuum equation set.

To tackle, within the conventional fluid dynamics framework, the non-equilibrium introduced by 

solid surfaces we have deve

lations. This combines slip boundary conditions with a near-wall scaling of the constitutive 

relations. We showed that this model is much more accurate at higher Knudsen numbers than the 

conventional second-order slip model. It provides good results for combined Couette/Poiseuille flow, 

and can predict the stress-strain-rate inversion that is evident from BGK solutions. 

We also applied our new model to the non-planar low-speed micro-flow around a sphere. Again, 

it demonstrated a marked improvement on conventional second-order slip pr

ugh there are some as yet unanswered questions regarding its stability at high Knudsen numbers. 

In addition to its predictive capabilities in planar and curved geometries, our new model 

• does not require re-calibration of its coefficients for different geometries; 

• is easily and consistently implemented within existing CFD frameworks as a scaled

viscosity; 

• is of equivalent computational cost to the standard Navier-Stokes equations (and additional 

numerical 

• is based on the same BGK results as standard second-order slip boundary conditions, i.e. it has 

not been fitted to higher Knudsen number data for the particul

• does not require additional boundary conditions for higher moments of the flow properties. 

ture work should include: 

• consideration of the effect of non-parallel wall interactions on the overall flowfield; 

• incorporating the thermal 

• developing micro slip and constitutive relation scaling based on a more sophisticated

model than the BGK approximation; 

• investigating polyatomic gas flows and the effect of gas mixtures. 

au hors would like to thank Prof Dimitris Valougeorgis for providing

c

for their very helpful comments. This work is funded in the UK by the Engineering and Physical 

Sciences Research Council under grant EP/D007488/1. 
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Figure 1. Quasi-steady wave amplitude variation with Knudsen number. BGK solution (ņņ); Navier-

Stokes and Burnett (······); super-Burnett (ņ · · ņ); Grad�s 13 moment (ņ · ņ); Regularized 13 moment 

(ņ ņ). 
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Figure 2. Wave amplitude variation with non-dimensional body force frequency, Į; Kn=0.1; BGK 

solution (ņņ); Navier-Stokes (ņ ņ).  
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Figure 3. Velocity phase lag variation with non-dimensional body force frequency, Į; Kn=0.1; BGK 

solution (ņņ); Navier-Stokes (ņ ņ). 
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Figure 4. Wave amplitude variation with non-dimensional body force frequency, Į; Kn=0.5. BGK 

solution (ņņ); Navier-Stokes (······); Burnett (ņ ņ  ņ ņ); super-Burnett (ņ · · ņ); Grad�s 13 moment 

(ņ · ņ); Regularized 13 moment (ņ ņ). 
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Figure 5. Velocity phase lag variation with non-dimensional body force frequency, Į; Kn=0.5. BGK 

solution (ņņ); Navier-Stokes (······); Burnett (ņ ņ  ņ ņ); super-Burnett (ņ · · ņ); Grad�s 13 moment 

(ņ · ņ); Regularized 13 moment (ņ ņ). 
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Figure 6. Wave amplitude variation with Knudsen number; Į=1.0. BGK solution (ņņ); Navier-Stokes 

(······); Burnett (ņ ņ  ņ ņ); super-Burnett (ņ · · ņ); Grad�s 13 moment (ņ · ņ); Regularized 13 

moment (ņ ņ). 
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Figure 7. Velocity phase lag variation with Knudsen number; Į=1.0. BGK solution (ņņ); Navier-

Stokes (······); Burnett (ņ ņ  ņ ņ); super-Burnett (ņ · · ņ); Grad�s 13 moment (ņ · ņ); Regularized 13 

moment (ņ ņ). 

 

 

 

 

Figure 8. Schematic of the Knudsen Layer extending out from a solid wall surface (shaded): uw is the 

velocity of the wall; uslip the velocity slip at the wall; u* is the amount of �fictitious� slip velocity that 

would be required to ensure that a Navier-Stokes solution (diagonal dashed line) provides an accurate 

prediction (solid line) beyond the Knudsen layer�s limit (vertical dashed line). 
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Figure 9. Non-dimensional velocity profile for Couette flow, Kn=0.05 (=λ/H). Comparison of the 

BGK solution (�) with the slip solution (�  �). Non-dimensional wall velocities at x=0 and x=H are �1 

and 1, respectively. 

 

 

 

 

Figure 10. Non-dimensional velocity profile for Poiseuille flow, Kn=0.05 (=λ/H). Comparison of the 

BGK solution (�) with the slip solution (�  �). The non-dimensional applied pressure gradient = Kn. 
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Figure 11. Non-dimensional velocity profile for high Knudsen number Couette flow (Kn=1.0). 

Comparison of the slip solution (···), the BGK solution (�), and our model (� �). Non-dimensional wall 

velocities at x=0 and x=H are �1 and 1, respectively. 

 

 

 

 

Figure 12. Average error of Couette flow velocity predictions up to Kn=2.0. Comparison of no-slip 

solution (� ·), slip solution (···), and our model (� �).  
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Figure 13. Non-dimensional Couette flow shear stress up to Kn=1.0. Comparison of the no-slip 

solution (� ·), slip solution (···), and our model (�  �). The non-dimensional wall velocities at x=0 and 

x=H are �1 and 1, respectively. 

 

 

 

 

Figure 14. Non-dimensional velocity profile for high-Knudsen-number Poiseuille flow (Kn=1.0). 

Comparison of the slip solution (···), the BGK solution (�), and our model (� �). The non-dimensional 

applied pressure gradient is Kn. 
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Figure 15. Average error of Poiseuille flow velocity predictions up to Kn=2.0. Comparison of no-slip 

solution (� ·), slip solution (···), and our model (� �). The non-dimensional applied pressure gradient is 

Kn. 

 

 

 

 

Figure 16. Normalized mass flow rate predictions for Poiseuille flow up to Kn=1.6. Comparison of no-

slip solution (� ·), slip solution (···), BGK solutions (�), and our model (� �). The non-dimensional 

applied pressure gradient is Kn; the non-dimensional mass flow rate is normalized with ( )Kn2π . 
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Figure 17. Non-dimensional velocity profile for high-Knudsen-number combined Couette/Poiseuille 

flow (Kn=1.0). Comparison of the slip solution (···), the BGK solution (�), and our model (�  �). The 

non-dimensional applied pressure gradient is Kn, and the non-dimensional wall velocities at x=0 and 

x=H are �1 and 1, respectively. 

 

 

 

Figure 18. Average error of combined Couette/Poiseuille flow velocity predictions up to Kn=2.0. 

Comparison of no-slip solution (� ·), slip solution (···), and our model (� �). The non-dimensional 

applied pressure gradient is Kn. 
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Figure 19. Coordinate system for the micro-sphere flow problem. 
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Figure 20. Normalized drag on a sphere versus Knudsen number. Comparison of classical slip solution 

(ņ · · ņ) by Basset (1888); a second-order slip solution (···) by Cercignani (1990); our model (ņ ņ); a 

BGK solution by Lea & Loyalka (1982); and a curve fit to the experimental data of Allen & Raabe 

(1985). 
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