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Abstract

Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data
of papers published in journals of the American Physical Society, searching for the type of function which best describes the
observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of
functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable
hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is
characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several
orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing
a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical
citation distributions and accounts for the presence of citation bursts as well.
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Introduction

Citation networks are compact representations of the relation-

ships between research products, both in the sciences and the

humanities [1,2]. As such they are a valuable tool to uncover the

dynamics of scientific productivity and have been studied for a

long time, since the seminal paper by De Solla Price [3]. In the last

years, in particular, due to the increasing availability of large

bibliographic data and computational resources, it is possible to

build large networks and analyze them to an unprecedented level

of accuracy.

In a citation network, each vertex represents a paper and there

is a directed edge from paper A to paper B if A includes B in its list

of references. Citation networks are then directed, by construction,

and acyclic, as papers can only point to older papers, so directed

loops cannot be obtained. A large part of the literature on citation

networks has focused on the characterization of the probability

distribution of the number of citations received by a paper, and on

the design of simple microscopic models able to reproduce the

distribution. The number of citations of a paper is the number of

incoming edges (indegree) kin of the vertex representing the paper

in the citation network. So the probability distribution of citations

is just the indegree distribution P kinð Þ. There is no doubt that

citation distributions are broad, as there are papers with many

citations together with many poorly cited (including many uncited)

papers. However, as of today, the functional shape of citation

distributions is still elusive. This is because the question is ill-

defined. In fact, one may formulate it in a variety of different

contexts, which generally yield different answers. For instance, one

may wish to uncover the distribution from the global citation

network including all papers published in all journals at all times.

Otherwise, one may wish to specialize the query to specific

disciplines or years. The role of the discipline considered is

important and is liable to affect the final result. For instance, it is

well known that papers in Biology are, on average, much more

cited than papers in Mathematics. One may argue that this

evidence may still be consistent with having similar functional

distributions for the two disciplines, defined on ranges of different

sizes. Also, the role of time is important. It is unlikely that citation

distributions maintain the exact same shape regardless of the

specific time window considered. The dynamics of scientific

production has changed considerably in the last years. It is well

known, for instance, that the number of published papers per year

has been increasing exponentially until now [4]. This, together

with the much quicker publication times of modern journals, has

deeply affected the dynamics of citation accumulation of papers.

Moreover, if the dataset at study includes papers published in

different years, older papers tend to have more citations than

recent ones just because they have been exposed for a longer time,

not necessarily because they are better works: the age of a paper is

an important factor.

So, the question of which function best describes the citation

distributions is meaningless if one does not define precisely the set

of publications examined. Redner [5] considered all papers

published in Physical Review D up to 1997, along with all articles

indexed by Thomson Scientific in the period 1981–1997, and

found that the right tail of the distribution, corresponding to highly

cited papers, follows a power law with exponent c~3, in accord

with the conclusions of Price [3]. Laherrére and Sornette [6]

studied the top 1120 most cited physicists during the period 1981–

1997, whose citation distribution is more compatible with a

stretched exponential P kinð Þ* exp { kinð Þb
h i

, with b^0:3. Tsallis

and de Albuquerque [7] analyzed the same datasets used by

Redner with an additional one including all papers published up to

1999 in Physical Review E, and found that the Tsallis distribution

P kinð Þ~P(0)= 1z b{1ð Þlkin½ �b=(b{1)
, with l^0:1 and b^1:5,

consistently fits the whole distribution of citations (not just the tail).

More recently Redner performed an analysis over all papers
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published in the 110 years long history of journals of the American

Physical Society (APS) [8], concluding that the log-normal

distribution

P kin
� �

~
1

kin
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp { ln kin

� �
{m

� �2
= 2s2
� �n o

ð1Þ

is more adequate than a power law. In other studies distributions

of citations have been fitted with various functional forms: power-

law [9–14], log-normal [12,15,16], Tsallis distribution [17,18],

modified Bessel function [19,20] or more complicated distributions

[21].

In this paper we want to examine citation networks more in

depth. We considered networks including all papers and their

mutual citations within several time windows. We have performed

a detailed analysis of the shape of the distributions, by computing

the goodness of fits with Kolmogorov-Smirnov statistics of three

model functions: simple power law, shifted power law and log-

normal. Moreover, we have also examined dynamic aspects of the

process of citation accumulation, revealing the existence of

‘‘bursts’’, i.e. of rapid accretions of the number of citations

received by papers. Citation bursts are not compatible with

standard models of citation accumulation based on preferential

attachment [22], in which the accumulation is smooth and papers

may attract many cites long after publication. Therefore, we

propose a model in which the citation attractiveness of a paper

depends both on the number of cites already collected by the

paper and on some intrinsic attractiveness that decays in time. The

resulting picture delivers both the citation distribution and the

presence of bursts.

Results

The distribution of cites
For our analysis we use the citation database of the American

Physical Society (APS), described in Materials and Methods. We

get the best fit for the empirical citation distributions from the

goodness of fit test with Kolmogorov-Smirnov (KS) statistics [23].

The KS statistic D is the maximum distance between the

cumulative distribution function (CDF) of the empirical data and

the CDF of the fitted model:

D~ max
kin§kmin

in

jS(kin){P(kin)j ð2Þ

Here S(kin) is the CDF of the empirical indegree kin and P(kin) is

the CDF of the model that fits best the empirical data in the region

kin§kmin
in . By searching the parameter space, the best hypothetical

model is the one with the least value of D from the empirical data.

To test the statistical significance of the hypothetical model, we

cannot use the values of the KS statistics directly though, as the

model has been derived from a best fit on the empirical data,

rather than being an independent hypothesis. So, following Ref.

[23] we generate synthetic datasets from the model corresponding

to the best fit curve. For instance, if the best fit is the power law

ax{b, the datasets are generated from this distribution. Each

synthetic dataset will give a value Dsynth for the KS statistics

between the dataset and the best fit curve. These Dsynth-values are

compared with Demp, i.e. the D-value between the original

empirical data and the best fit curve, in order to define a p-value.

The p-value is the fraction of Dsynth-values larger than Demp. If p is

large (close to 1), the model is a plausible fit to the empirical data;

if it is close to 0, the hypothetical model is not a plausible fit. We

applied this goodness of fit test to three hypothetical model

distributions: log-normal, simple power law and shifted power law.

The log-normal distribution for the indegree kin is given by

P(kin)*
1

kin

ffiffiffiffiffiffiffiffiffiffi
2ps2
p expf{½log (kin){m�2=(2s2)g, ð3Þ

the simple power law distribution by

P(kin)*kin
{c, ð4Þ

and the shifted power law by

P(kin)*(kinzk0){c: ð5Þ

We used 1000 synthetic distributions to calculate the p-value for

each empirical distribution.

Fig. 1 shows some fits for datasets corresponding to several time

windows (see Materials and Methods). The detailed summary of

the goodness of fit results is shown in Table 1. The simple power

law gives high p-value only when one considers the right tail of the

distribution (usually kinw20). The log-normal distribution gives

high p-value for early years (before 1970) but after 1970 the p-

value is smaller than 0.2. As shown in Figs. 1a and 1b, there is a

clear discrepancy in the tail between the best fit log-normal

distribution and the empirical distribution. The shifted power law

distribution gives significant p-values (higher than 0.2) for all

observation periods. The values of the exponent c of the shifted

power law are decreasing in time. The range of c goes from 5:6
(1950) to 3:1 (2008).

We conclude that the shifted power law is the best distribution

to fit the data.

The distribution of citation bursts
We now turn our attention to citation ‘‘bursts’’. While there has

been a sizeable activity in the analysis of bursty behavior in human

dynamics [24–26], we are not aware of similar investigations

for citation dynamics. We compute the relative rate

Dk=k~½k(tzdt)i
in{k(t)i

in�=k(t)i
in�, where k(t)i

in is the number of

citations of paper i at time t. The distributions of Dk=k with

t~1949, 1969, 1989, 2007 and dt~1 year are shown in Fig. 2a.

They are visibly broad, spanning several orders of magnitude.

Similar heavy tails of burst size distributions were observed in the

dynamics of popularity in Wikipedia and the Web [27]. It is

notable that the largest bursts take place in the first years after

publication of a paper. This is manifest in Fig. 2b, where we show

distributions derived from the same dataset as in Fig. 2a, but

including only papers older than 5 (squares) and 10 years

(triangles): the tail disappears. In general, more than 90% of large

bursts (Dk=kw3:0) occur within the first 4 years since publication.

Preferential attachment and age-dependent
attractiveness

For many growing networks, cumulative advantage [28,29], or

preferential attachment [22], has proven to be a reliable

mechanism to explain the fat-tailed distributions observed. In

the context of citation dynamics, it is reasonable to assume that, if

a paper is very cited, it will have an enhanced chance to receive

citations in the future with respect to poorly cited papers. This can

be formulated by stating that the probability that a paper gets cited

is proportional to the number of citations it already received. That

was the original idea of Price [30] and led to the development of

the first dynamic mechanism for the generation of power law
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distributions in citation networks. In later refinements of the

model, one has introduced an attractiveness for the vertices,

indicating their own appeal to attract edges, regardless of degree.

In particular, one has introduced the so-called linear preferential

attachment [31,32], in which the probability for a vertex to receive a

new edge is proportional to the sum of the attractiveness of the

vertex and its degree. In this Section we want to check whether

this hypothesis holds for our datasets. This issue has been

addressed in other works on citation analysis, like Refs. [13,33].

We investigated the dependence of the kernel function P(kin)
on indegree kin [34,35]. The kernel is the rate with which a vertex

i with indegree ki
in acquires new incoming edges. For linear

preferential attachment the kernel is

P(ki
in)~

ki
inzAiP

j k
j
inzAj

h i : ð6Þ

In Eq. 6 the constant Ai indicates the attractiveness of vertex i.

Computing the kernel directly for each indegree class (i.e. for all

vertices with equal indegree kin) is not ideal, as the result may

heavily fluctuate for large values of the indegree, due to poor

Figure 1. Empirical citation distributions and best fit model distributions obtained through the goodness of fit with Komolgorov-
Smirnov statistics. PL: Power law. SPL: Shifted power law. LN: Log-normal.
doi:10.1371/journal.pone.0024926.g001

Table 1. Summary of the results of the goodness of fit test with Kolmogorov-Smirnov statistic on the empirical citation
distributions for three test functions: log-normal (LN), simple power law (PL) and shifted power law (SPL).

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2008

LN

p-value 0.717 0.734 0.892 0.998 0.201 0.105 0.19 0.119 0.194 0.194 0.096 0.05 0.064

kmin 2 3 7 14 2 2 2 3 2 2 2 2 2

PL

p-value 0.001 0.955 0.056 0.321 0.022 0.127 0.204 0.784 0.686 0.412 0.362 0.619 0.44

kmin 6 16 9 19 12 17 20 39 46 39 43 47 47

SPL

p-value 0.832 0.777 0.49 1.00 0.943 0.958 0.49 0.728 0.909 1.00 0.797 0.989 0.99

kmin 2 2 2 14 9 12 2 2 2 2 3 6 5

The fits are done for indegree larger than kmin , whose values are also reported in the table.
doi:10.1371/journal.pone.0024926.t001
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statistics. So, following Refs. [34,35], we consider the cumulative

kernel Pw(ki
in)~

P
k
0
ƒkin

P(k
0
), which, for the ansatz of Eq. 6,

should have the following functional dependence on kin

Pw(kin)*k2
inzSATkin: ð7Þ

In Eq. 7 SAT is the average attractiveness of the vertices. In order to

estimate Pw(kin), we need to compute the probability that vertices

with equal indegree have gotten edges over a given time window,

and sum the results over all indegree values from the smallest one to

a given kin. The time window has to be small enough in order to

preserve the structure of the network but not too small in order to

have enough citation statistics. In Fig. 3 we show the cumulative

kernel function Pw(kin) as a function of indegree for a time window

from 2007 to 2008. The profile of the curve (empty circles) is

compatible with linear preferential attachment with an average

attractiveness SAT~7:0 over a large range, although the final part

of the tail is missed. Still, the slope of the tail, apart from the final

plateau, is close to 2, like in Eq. 7. Our result is consistent with that

of Jeong et al. [34], who considered a citation network of papers

published in Physical Review Letters in 1988, which are part of our

dataset as well. We have repeated this analysis for several datasets,

from 1950 until 2008, by keeping a time window of one year in each

case. The resulting values of SAT are reported in Table 2, along

with the number of vertices and mean degree of the networks. The

average value of the attractiveness across all datasets is 7:1. This

value is much bigger than the average indegree in the early ages of

the network like, for example, from 1950 to 1960. Hence, in the

tradeoff between indegree and attractiveness of Eq. 6, the latter is

quite important for old papers. In general, for low indegrees,

attractiveness dominates over preferential attachment. As we see in

Fig. 3, in fact, for low indegrees there is no power law dependence of

the kernel on indegree.

Finally we investigated the time dependence of the kernel. As

shown in Fig. 3, when we limit the analysis to papers older than 5

years (squares) or 10 years (triangles), the kernel has a pure

quadratic dependence on indegree in the initial part, without

linear terms, so the attractiveness does not affect the citation

dynamics. This means that the attractiveness has a significant

influence on the evolution of the citation network only within the

first few years after publication of the papers. The presence of

vertex attractiveness had been considered by Jeong et al. as well

[34].

The model
We would like to design a microscopic model that reflects the

observed properties of our citation networks. Preferential attach-

ment does not account for the fact that the probability to receive

citations may depend on time. In the Price model, for instance,

papers keep collecting citations independently of their age, while it

is empirically observed [33,36,37] that the probability for an

article to get cited decreases as the age of the same article

increases. In addition, we have seen that citation bursts typically

occur in the early life of a paper. Some sophisticated growing

network models include the aging of vertices as well [33,37–40].

We propose a mechanism based on linear preferential attachment,

where papers have individual values of the attractiveness, and the

latter decays in time.

The model works as follows. At each time step t, a new vertex

joins the network (i.e., a new paper is published). The new vertex/

paper has m references to existing vertices/papers. The probability

P(i?j,t) that the new vertex i points to a target vertex j with

indegree k
j
in reads

P(i?j,t)*½kj
inzAj(t)�, ð8Þ

where Aj(t) is the attractiveness of j at time t. If Aj(t) were

constant and equal for all vertices we would recover the standard

linear preferential attachment [31,32]. We instead assume that it

decays exponentially in time

A(t)~A0 exp½{(t{t0)=t�: ð9Þ

In Eq. 9 A0 is the initial attractiveness of the vertex, and t0 is the

time in which the vertex first appears in the network; t is the time

scale of the decay, after which the attractiveness lowers

considerably and loses importance for citation dynamics. Since

citation bursts occur in the initial phase of a paper’s life (Fig. 2b),

when vertex attractiveness is most relevant, we expect that the

values of the initial attractiveness are heterogeneously distributed,

to account for the broad distribution of burst sizes (Fig. 2a). We

assume the power law distribution

Figure 2. Distributions of citation burst size. (a) The four curves correspond to 1949, 1969, 1989 and 2007, the observation window is dt~1
year. (b) Here the reference year is 2007, but the burst statistics is limited to the papers published until 2003 (squares) and 1998 (triangles). For
comparison, the full curve comprising all papers (circles, as in (a)) is also shown.
doi:10.1371/journal.pone.0024926.g002
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P(A0)*A{a
0 : ð10Þ

We performed numerical simulations of the model with param-

eters obtained from the empirical data. We use a~2:5, t~1 year

and AminƒA0v0:002N(t) with N(t) is the number of papers at

time t. The upper bound represents the largest average indegree of

our citation networks, expressed in terms of the number of

vertices. The value of Amin depends on the obtained value of the

attractiveness from empirical data. We set Amin~25:0 for most

years, for 1950 we set Amin~14:5, because SAT is smaller than

7:1. The result is however not very sensitive to the minimum and

maximum value of A0. Fig. 4 shows the citation distributions of

empirical data versus the model prediction. The model can

reproduce the empirical distributions very well at different phases

in the evolution of the APS citation network, from the remote

1950 (panel d) until the very recent 2008 (panel a).

The distributions of citation burst magnitude Dk=k for the data

and the model are shown in Fig. 5a. For a better comparison

between data and model we ‘‘evolve’’ the network according to the

model by starting from the structure of the empirical citation

network at the beginning of the time window for the detection of

the bursts. We stop the evolution after the observation time dt

elapses. In Fig. 5a we consider 1989 and 2007, with a time window

of 1 year for the burst detection. The model successfully

reproduces the empirical distributions of burst size. In Fig. 5b

we consider much longer observation periods for the bursts, of 5
and 10 years. Still, the model gives an accurate description of the

tail of the empirical curve in both cases.

Discussion

We investigated citation dynamics for networks of papers

published on journals of the American Physical Society.

Kolmogorov-Smirnov statistics along with goodness of fit tests

make us conclude that the best ansatz for the distribution of

citations (from old times up to any given year) is a shifted power

law. The latter beats both simple power laws, which are acceptable

only on the right tails of the distributions, and log-normals, which

are better than simple power laws on the left part of the curve, but

are not accurate in the description of the right tails. We have also

studied dynamic properties of citation flows, and found that the

early life of papers is characterized by citation bursts, like already

found for popularity dynamics in Wikipedia and the Web.

The existence of bursts is not compatible with traditional models

based on preferential attachment, which are capable to account

for the skewed citation distributions observed, but in which

citation accumulation is smooth. Therefore we have introduced a

variant of linear preferential attachment, with two new features: 1)

2

Figure 3. Cumulative kernel function of the citation network from 2007 to 2008. The continuous line is Ckint(kintzvAw) with
vAw~7:0, C is a constant. The dashed line corresponds to the case without attractiveness (vAw~0:0).
doi:10.1371/journal.pone.0024926.g003

Table 2. Statistics of the empirical citation networks: N is the number of vertices in the network; vkw is the average indegree of
the network; vAw is the average attractiveness, determined from the tests of linear preferential attachment discussed in the text.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2008

N 15880 23350 30996 42074 62382 85590 108794 138206 180708 238142 305570 386569 441595

vkw 2.2 3.1 3.7 4.3 5.1 5.6 6.0 6.2 6.5 7.0 7.7 8.5 9.0

vAw 4.2 5.3 6.2 5.4 7.2 7.9 7.8 9.0 7.4 7.3 6.8 6.4 7.0

doi:10.1371/journal.pone.0024926.t002
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the attractiveness decays exponentially in time, so it plays a role

only in the early life of papers, after which it is dominated by the

number of citations accumulated; 2) the attractiveness is not the

same for all vertices but it follows a heterogeneous (power-law)

distribution. We have found that this simple model is accurate in

the description of the distributions of citations and burst sizes,

across very different scientific ages. Moreover, the model is fairly

robust with respect to the choice of the observation window for the

bursts.

Materials and Methods

Our citation database includes all papers published in journals

of the American Physical Society (APS) from 1893 to 2008, except

papers published in Reviews of Modern Physics. There are 3 992

736 citations among 414 977 papers at the end of 2008. The

journals we considered are Physical Review (PR), Physical Review

Letters (PRL), Physical Review A (PRA), Physical Review B (PRB),

Physical Review C (PRC), Physical Review D (PRD), Physical

Figure 4. Comparison of the citation distributions from the empirical data and our model. For all cases, we used a~2:5 and t~1 year. (a)
For 2008, N~4415905, vkw~9:0. (b) For 1990, N~180708, vkw~6:5. (c) For 1970, N~62382, vkw~5:6. (d) For 1950, N~1950, vkw~3:1.
Here N is the number of vertices/papers and vkw the average number of citations/indegree.
doi:10.1371/journal.pone.0024926.g004

Figure 5. Comparison of the distributions of citation burst size from the empirical data and the model. The exponent a of the
distribution of initial attractiveness is 2:5, as in Fig. 4. (a) The reference years are 1989 (squares) and 2007 (circles), the observation window for the
bursts is dt~1 year in both cases. (b) Here the reference years are 1998 (squares) and 2003 (circles) and the observation windows for the bursts are of
10 and 5 years, respectively.
doi:10.1371/journal.pone.0024926.g005
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Review E (PRE), Physical Review - Series I (PRI), Physical Review

Special Topics - Accelerators and Beams (PRSTAB), and Physical

Review Special Topics - Physics Education Research (PRSTPER).

From these data, we constructed time-aggregated citation

networks from 1950 to a year x, with x~1951,1952,::::,2007,
2008.
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