Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Parametric design and multi-objective optimisation of containerships

Priftis, Alexandros and Boulougouris, Evangelos and Turan, Osman and Papanikolaou, Apostolos (2017) Parametric design and multi-objective optimisation of containerships. In: International Conference in Shipbuilding and Offshore Engineering 2017, 2017-03-10 - 2017-03-10, Academy of Maritime Education and Training.

Text (Priftis-etal-ICSOE2017-Parametric-design-and-multi-objective-optimisation)
Accepted Author Manuscript

Download (1MB) | Preview


The introduction of new regulations by the International Maritime Organisation, the fluctuation of fuel price levels, along with the continuous endeavour of the shipping industry for economic growth and profits has led the shipbuilding industry to explore new and cost-efficient designs for various types of merchant ships. In this respect, proper use of modern computer-aided design/computer-aided engineering systems (CAD/CAE) extends the design space, while generating competitive designs in short lead time. The present paper deals with the parametric design and optimisation of containerships. The developed methodology, which is based on the CAESES/Friendship-Framework software system, is demonstrated by the conceptual design and multi-objective optimisation of a midsized, 6,500 TEU containership. The methodology includes a complete parametric model of the ship’s external and internal geometry and the development and coding of all models necessary for the determination of the design constraints and the design efficiency indicators, which are used for the evaluation of parametrically generated designs. Such indicators defining the objective functions of a multi-objective optimisation problem are herein the energy efficiency design index, the required freight rate, the ship’s zero ballast container box capacity and the ratio of the above to below deck number of containers. The set-up multi-objective optimisation problem is solved by use of the genetic algorithms.