Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

An experimental and analytical study of plasma closing switches filled with environmentally friendly gases

McGarvey, C. and Timoshkin, I. V. and MacGregor, S. J. and Wilson, M. P. and Given, M. J. and Sinclair, M. A. (2015) An experimental and analytical study of plasma closing switches filled with environmentally friendly gases. In: 2015 IEEE Pulsed Power Conference (PCC). IEEE, Piscataway, NJ., pp. 1-6. ISBN 9781479984039

[img]
Preview
Text (McGarvey-etal-PPC2015-plasma-closing-switches-filled-with-environmentally-friendly-gases)
McGarvey_etal_PPC2015_plasma_closing_switches_filled_with_environmentally_friendly_gases.pdf
Accepted Author Manuscript

Download (596kB) | Preview

Abstract

In recent years there has been a desire within the pulsed power community to find potential alternative gases to sulphur hexafluoride (SF6) for use within pulsed power systems. Within plasma closing switches (PCSs), the desire to use environmentally friendly gases has come as a result of environmental concerns over the emissions of currently used gases into the atmosphere and contributing to the global warming problem. One of the main issues in finding a suitable replacement gas or gases for use in PCSs is that the performance characteristics of a switch filled with an alternative gas or gas mixture should be comparable to the performance characteristics of conventional SF6-filled switches. The research presented in this paper is an expansion of previous work conducted and forms an experimental and analytical evaluation of breakdown characteristics in two commonly used PCS topologies (a two-electrode self-breakdown switch and a field distortion switch) when filled with different gases (air, oxygen-nitrogen mixtures, argon oxygen mixture, nitrogen and carbon dioxide) over a range of pressures from 0.1 MPa to 0.45 MPa and for a range of inter-electrode distances.