
This version is available at https://strathprints.strath.ac.uk/60087/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Inactivation of *Clostridium difficile* by 405nm HINS-light
Sian Moorhead, Dr Michelle Maclean, Prof John Coia, Prof Scott MacGregor

Clostridium difficile
- *Clostridium difficile* is a major cause of hospital-associated diarrhoea that can be fatal for the young, elderly and immunocompromised.
- Under adverse conditions, this anaerobic bacterium forms spores which can survive in the environment up to 5 months.
- It is transmitted mainly by the oral-faecal route, however the environment also plays an important role in transmission.

HINS-light
- HINS-light is a novel light-based decontamination method which uses visible violet light, with a peak wavelength of 405nm, to induce lethal oxidative damage to exposed microorganisms.
- HINS-light has been used to develop an environmental disinfection system for use in hospital isolation rooms.

Spores vs Vegetative cells
C. difficile spores are 10-15 times more resistant to various chemicals and physical agents than vegetative cells. This makes spores difficult to eradicate and facilitates spread of *C. difficile* in the environment.
C. difficile sporulation is triggered under adverse conditions i.e., in aerobic conditions, desiccation, and starvation, such as the hospital environment.

C. difficile sporulation cycle

Aims
To establish the susceptibility of *C. difficile* vegetative cells and spores to 405nm light. This could aid development of this novel method for the reduction of *C. difficile* contamination, and cross-infection within the hospital environment.

Methods
Spore and vegetative cell suspensions were exposed to high irradiance 405nm light, and surviving populations enumerated.

Results
Exposure of vegetative cells to 252 J/cm² 405nm HINS-light achieves a 3-log₁₀ population reduction.
Spores require a dose of 2430 J/cm² to achieve a similar 3-log₁₀ reduction, demonstrating the higher resilience of spores compared to vegetative cells.

Conclusions and Further Research Questions
- In conclusion, it is evident that 405nm HINS-light can successfully be used for the inactivation of both *Clostridium difficile* vegetative cells and spores.
- Spores however are much more resilient than vegetative cells, requiring more than 10x the dose for inactivation compared to vegetative cells to achieve a ~3.5 reduction.

- Can inducing germination of spores enhance HINS-light decontamination?
- Can synergistic decontamination be achieved through combined use of 405nm light and disinfectants?
- Can this decontamination effect be replicated in the clinical environment?