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Abstract: Despite the significant improvements in the understanding of pitting 

corrosion, many aspects of this phenomenon remain unclear and corrosion rate 

prediction based on experimental data remains difficult. Experimental measurements 

of corrosion rates under different electrochemical conditions can be complex and 

time consuming, and the conclusions are limited to the timescale and the conditions 

in which experiments have been carried out. In order to overcome these limitations, 

numerical approaches can be a valuable complement.  Hence, in this study a new 

numerical model based on peridynamics to predict pitting corrosion damage is 

developed. The developed model is implemented in a commercial finite element 

software and it allows for the reproduction of realistic pitting morphologies, 

modelling of microstructural effects such as the presence of intermetallic particles 

and the reduction of the computational cost of the simulations. In conclusion, the 

results of this study shows that the peridynamic models can be helpful in failure 

analysis and design of new corrosion-resistant materials.  
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1. Introduction 

Corrosion is a natural process that can be described as the chemical or 

electrochemical reaction of an engineering material with the environment, which 

eventually leads to the deterioration of its mechanical properties. There are various 

types of corrosion mechanisms including stress corrosion cracking (SCC) and pitting 

corrosion.  

Pitting is a localised form of corrosion that leads to the formation of corrosion 

cavities or pits due to the breakage of the material’s passive film. Pitting typically 

occurs in materials such as stainless steel, aluminium, titanium, copper, magnesium 

and nickel alloys. Pitting corrosion is the most common, dangerous and destructive 

type of corrosion in marine and offshore structures (Bhandari et al., 2015).  

Despite the significant improvements in the understanding of pitting corrosion, 

many aspects of this phenomenon remain unclear and corrosion rate prediction 

based on experimental data remains difficult (Onishi et al., 2012). Experimental 

measurements of corrosion rates under different electrochemical conditions can be 

complex and time consuming, and the conclusions are limited to the timescale and 

the conditions in which experiments have been carried out (Van der Weeën et al., 

2014). Moreover, distinguishing the effect of each individual variable becomes 

extremely difficult (Xiao and Chaudhuri, 2011). In order to overcome these 

limitations, numerical approaches can be a valuable complement. 

Several numerical approaches are available in the literature for the modelling of 

corrosion damage, and many of them are based on finite element method (Sharland 

et al., 1989; Walton, 1990; Laycock and White, 2001; Scheiner and Hellmich, 

2009). However, the modelling of pit propagation by using finite element method 

(FEM) is not an easy task since special procedures of moving mesh and remeshing 

are often needed (Duddu, 2014). Moreover, if remeshing techniques are used, the 

finite element matrices have to be recalculated for every time step (Vagbharathi and 

Gopalakrishnan, 2014). In order to overcome these difficulties, an alternative 



 

numerical approach to the FEM can be the use of extended Finite Element Method 

(XFEM). Vagbharathi and Gopalakrishnan (2014) and Duddu (2014) describe 

numerical models of corrosion pit propagation in stainless steel based on the XFEM 

framework and Fick’s law of diffusion. An extension to the latter work was done by 

Duddu et al. (2015), where the Fick’s law of diffusion was replaced by the Nernst-

Planck equation and crevice corrosion in Al-Mg alloy microstructures was 

investigated.  

Although all the aforementioned models have been quite effective in predicting 

the corrosion rates reported in the experimental literature, none of these models have 

been able to predict corrosion subsurface damage, which is a phenomenon 

documented in the experimental literature (Song et al., 2014). With the aim of filling 

this gap, a new continuum mechanics formulation, peridynamics (PD), has been 

recently used to create a model of pitting corrosion (Chen and Bobaru, 2015) based 

on a modified Nernst-Planck equation. This work was extended in (Chen et al., 

2015), where the influence of the pit cover on the pit morphology was investigated.  

In this study, a new numerical model based on PD theory for the investigation 

of pitting corrosion is introduced. This work is based on the PD model of pitting 

corrosion developed by Chen and Bobaru (2015). However, the numerical approach 

used in the present study is different and offers the advantage of a reduced 

computational time by performing the numerical implementation in a commercial 

finite element software and utilizing implicit time integration. Moreover, the 

capabilities of the numerical framework have been extended to the modelling of 

realistic pit morphologies and determining the influence of microstructural features 

of the material, e.g. intermetallic particles. The ultimate goal of this study is to 

produce a non-conventional and more effective numerical framework that can be 

helpful in failure analysis and design of new corrosion-resistant materials. 

 

 



 

2. Peridynamics 

The governing equations of classical continuum mechanics (CCM) are based on 

partial differential equations (PDEs) and its mathematical formulation breaks down 

in the presence of discontinuities such as cracks. This limitation is partially 

overcome with the adoption of external crack growth criteria based on fracture 

mechanics. However, this approach presents its own limitations. In light of the 

limiting assumptions and difficulties of the current approaches, a new mathematical 

formulation of continuum mechanics was developed by Silling (2000), which is 

called “peridynamics”.  

   The governing equations of PD are integro-differential. The PD equations of 

motion of a generic material point x  can be written as (Silling, 2000)  

                                 , , , , d ,
H

t t t V t     
x

xx u x f u x u x x x b x                 (1) 

where   x  and  , tu x  denote the density and acceleration of the material point x  

at time t, respectively. In Eq. (1),     , , ,t t  f u x u x x x  represents the PD force 

between material points x  and x  (also called mechanical response function) and 

the term  , tb x is the body force acting on material point x  at time t. dV x  is the 

volume associated with material point x . According to this new formulation, a 

material point can interact with other material points not only within its nearest 

neighbourhood, but also with material points in a larger neighbourhood (Fig. 1). 



 

 

Fig. 1 Peridynamic forces between between material points x  and x . 

    It can be assumed that the interaction between material points decreases as the 

distance between them increases. Therefore, an influence domain, named 

horizon, Hx , can be defined for each material point as shown in Fig. 2. 

 

Fig. 2 Peridynamic bonds between material points inside the peridynamic horizon, Hx . 

    The material point x  can only interact with material points within this domain, 

which are called the “family” of x . This interaction is called “bond” and its length is 

simply the distance between the two material points. In the case of an elastic 



 

material, the peridynamic force between material points x  and x , can be expressed 

as 

                                                         c s
 
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y y
f

y y
                                                    (2) 

where y  represents the location of the material point x  in the deformed 

configuration as shown in Fig. 3, i.e.  y x u , while c  is the bond constant  which 

can be related to material constants of CCM as described in Madenci and Oterkus 

(2014).  

 

Fig. 3 Peridynamic horizon in the undeformed configuration (left) and the deformed 

configuration (right) 

In Eq. (2), the stretch parameter, s , is defined as 

                                                       s
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y y x x

x x
                                             (3) 

In the case of a brittle material behaviour, the peridynamic force and the stretch 

relationship are shown in Fig. 4. 



 

 

Fig. 4 PD bond behaviour for brittle materials 

    The parameter 0s , in Fig. 4, is called critical stretch and if the stretch of a 

peridynamic bond exceeds this critical value, the peridynamic interaction (bond) is 

broken. As a result, the peridynamic force between the two material points reduces 

to zero and the load is redistributed among the other bonds, leading to unguided 

material failure. Peridynamics can be applicable for different material systems 

including metals and composites (Oterkus and Madenci, 2012). Moreover, PD 

framework can be extended to other fields such as thermal (Gerstle et al., 2008), 

moisture (Oterkus et al., 2014), etc., so that it can be used as a single platform for 

multiphysics analysis of materials (Amani et al., 2016; De Meo et al., 2016; Oterkus 

et al., 2013; Oterkus and Madenci, 2014). 

3. Peridynamic modelling of pitting corrosion 

    In this section, PD framework for modelling of pitting corrosion based on the 

formulation developed by Chen and Bobaru (2015) is presented. The mathematical 

formulation is based on a modified version of the Nernst-Planck equation (NPE). 

The NPE is a mass conservation equation that describes the motion of charged 

chemical species in a fluid under the effect of concentration gradients (diffusion), 

electric field (migration) and fluid velocity (convection). In this regard, the flux iN  

in [mol/(m2/s)] of the generic species ‘i’ can be written as (Gavrilov et al., 2007; 

Chen and Bobaru, 2015)  
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where iD  in [m2/s] is the diffusion coefficient, iC  is the concentration in [mol/m3] 

of the species “i”, F in [C/mol] is the Faraday constant, R in [J/(mol K)] is the 

universal gas constant, in  is the valence number, ϕ	 in [V] or [J/C] is the electric 

potential and U in [m/s] is the flow velocity. The conservation of mass can be 

written as (Gavrilov et al., 2007)  

                                                        i
i

C

t


  


N                                                      (5) 

where t in [s] is time and   is the divergence operator. The majority of pitting 

corrosion models available in the literature focuses on the motion of chemical 

species inside the electrolyte solution. However, recent experimental studies have 

revealed the existence of a ‘wet region’ at the solid/liquid interface of the corrosion 

pit, where the motion of chemical species can occur. In other words, the electrolyte 

solution penetrates the subsurface region of the pit filling the pores of the material, 

allowing metal dissolution to occur not only at the solid/liquid interface, but also in 

a subsurface region of the pit. 

    In order to capture this process, Eq. (5) is used to predict the motion of metal 

cations +Men  in both the electrolyte solution and the solid with the following 

simplifications and assumptions: 

Motion within the solution 

 The electromigration and convective terms in Eq. (4) are included inside the 

diffusion coefficient, which is now called as effective diffusion coefficient 

in the liquid ldD . 



 

Therefore, the governing equation used to predict the motion of metal cations within 

the electrolyte solution is given by the following modified version of the Nernst-

Planck equation as 

                                         2-MI
ld MI ld MI

C
D C D C

t


     


                                  (6) 

where, MIC  refers to the metal concentration inside the electrolyte solution, which is 

considered to be 1M NaCl in this study. The effective diffusion coefficient in the 

liquid can be obtained from the study reported in Kuo and Landolt (1975), where 

rotating disk electrode experiments of iron dissolution in chloride solutions are 

described and the electromigration effect is taken into consideration empirically as 

                                                   10 28.5 10 /ldD m s                                               (7) 

Motion within the solid 

 The velocity of the fluid diffusing inside the pores of the metal is neglected 

and the convection term in Eq. (4) is not considered. 

 The effect of the electromigration term in Eq. (4) is included inside the 

diffusion coefficient, which is now called as effective diffusion coefficient 

in the solid sdD . 

The governing equation used to describe the motion of metal cations within the solid 

is given by the following modified version of the Nernst-Planck equation as 

                                        2-MI
sd MI sd MI

C
D C D C

t


    


                                  (8) 

where, in this case, MIC  refers to the metal concentration inside the solid. 

    As shown in Eq. (8), the flux of metal cations is linearly proportional to the 

effective diffusivity. According to Faraday’s laws of electrolysis, the amount of 



 

metal dissolution aN  in [mol/s] is linearly proportional to the anodic current density, 

which can be expressed as 

                                                  F F ol
a a

dM
i n n

dt
 N                                              (9) 

where olM  expressed in [mol] is the number of moles of the material. Therefore, in 

order to obey Faraday’s laws of electrolysis, the effective diffusion coefficient in the 

solid is expressed as a function of the overpotential η as  

                                           
F

R( ) (0)
n

T
sd sd sdD D D e

 

                                            (10) 

In Eq. (10), the term (0)sdD  represents the value of the diffusion coefficient in the 

solid when the overpotential is null, which can be found through calibration against 

experimental polarisation data. Eq. (10) can also be written as  
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a
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D
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                                           (11) 

Moreover, the anodic current density in Eq. (9) can also be expressed as a function 

of the moving speed of the solid/liquid interface, i.e. the pit base, intv  [m/s] as 

                                               intF Fa a solidi n n C v N                                              (12) 

where 4F 9.64859 10 C / mol   and solidC  in [mol/m3] is the concentration of metal 

cations in the solid. As described in Scheiner and Hellmich (2009), in the case of 

stainless steel grade 304 (304 SS), i.e. the material considered in this study, solidC  

can be calculated by considering the mass density of 304 SS and the molar masses of 

its main components Fe, Ni and Cr as 

                                              3143,000 mol / msolidC                                             (13) 

A similar approach can be used for the calculation of the valence number of 304 SS: 



 

                                                            2.19n                                                         (14) 

As mentioned earlier, the corrosive solution considered in this study is 1M NaCl at 

temperature 298.15 KT   and the related saturation concentration value of 

dissolved stainless steel metal cations, satC , can be inferred from X-ray analysis 

(Isaacs et al., 1995) as 

                                                35,100 mol / msatC                                                 (15) 

As described in Chen and Bobaru (2015), the calibration procedure for the 

calculation of (0)sdD  consists of the following steps: 

1. A small initial value is chosen for the diffusion coefficient in the solid 

( )sdD   to make sure that corrosion will be in activation-controlled regime. 

2.  The simulation is launched and the velocity intv  of the solid/liquid interface, 

i.e. metal dissolution front, is recorded. 

3.  Eq. (12) is used to calculate the current density, ai . 

4. Once ai  is known, it is possible to calculate the corresponding overpotential 

value by using the experimental polarization diagram reported in Chen and 

Bobaru (2015). 

5. Eq. (11) can now be used to calculate (0)sdD  considering the following 

value of the Tafel constant: 45.1 mVa   (Chen and Bobaru, 2015). 

17(0) 7.352 10sdD   m2/s is the outcome of this calibration procedure, which is in 

agreement with Chen and Bobaru (2015).  

    When the concentration of metal ions in the liquid reaches the saturation value 

satC , a salt film precipitates at the liquid/solid interface. The concentration of metal 



 

ions in the liquid cannot be greater than the saturation value. When the concentration 

value of the generic node is greater than satC , then the node is considered to be in 

solid phase. On the contrary, when the concentration value is smaller than satC , then 

the node is considered to be in liquid phase. 

    The peridynamic governing equation for metal dissolution can be written as 

                             d( , ) , , , , , , dMI MI MI

H

C t f C t C t t V  
x

x'x x x x x                         (16) 

where ( , )MIC tx  is the time derivative of metal ions concentration associated with 

the generic material point x . In Eq. (16), the peridynamic function 

    d , , , , , ,MI MIf C t C t t x x x x is called metal dissolution response function and it is 

defined as 

                                          d
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x x
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in which the peridynamic metal ions diffusion bond constant MId  can be expressed 

in terms of the effective diffusion coefficient as (Chen and Bobaru, 2015)  
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4
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 

                                        (18) 

where h in [m] refers to the thickness of the body and effD in [m2/s] is the effective 

diffusion coefficient which can be calculated as suggested in Chen and Bobaru 

(2015) as  
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The PD model of pitting corrosion consists of mechanical bonds overlapped by 

diffusion bonds. The former bonds are aimed to capture the subsurface mechanical 

damage reported in recent experimental studies (Song at al. 2014). For this purpose, 

a damage index, ( , )d tx , is defined for each node as 

                                                        ( , ) f

tot

N
d t

N
x                                                    (20) 

where fN  and totN  are the number of failed bonds and the total number of bonds 

attached to the node at x , respectively. At the beginning of the simulation, all the 

nodes belonging to the solid body have a concentration value ( , )MIC tx  equal to 

solidC , which means no corrosion. Therefore, in this condition, all the mechanical 

bonds connected to x  are intact and its damage ( , )d tx  index is null. On the 

contrary, when ( , )MIC tx  becomes smaller than liquidC , the node at x  changes its 

phase from solid to liquid, which means complete metal dissolution. Therefore, in 

this condition, all the mechanical bonds connected to x  are broken and the damage 

index has a unit value. As suggested in Chen and Bobaru (2015), the damage index 

( , )d tx  can therefore be written as a function of the nodal concentration ( , )MIC tx  as 
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( , ) solid MI
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C C t
d t
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
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x

x                                         (21) 

Each bond has a certain probability Pr to be broken in the current time step. In each 

time step, Pr can be calculated as (Chen and Bobaru, 2015)  



 

                                               
1

1

1
i

r
t solid sat

C
P

d C C

 
    

                                       (22) 

where 1td   represents the value of the damage index at the previous time step, and 

iC  is the difference in nodal concentration between the previous time step and the 

current time step. Once Pr is calculated, a random number in the range [0,1] is 

generated for each bond. If the random number is smaller than Pr, then the 

mechanical bond is broken and the value of the damage index is updated. 

4. Numerical solution method 

    As mentioned earlier, the PD equation of motion is integro-differential and, in 

general, it cannot be solved analytically. Therefore, numerical techniques for time 

and spatial integration are usually needed to solve the PD governing equations. 

    Concerning spatial integration, a meshless scheme and the collocation method can 

be used. The domain can be divided in smaller parts (Fig. 5), where each part has an 

associated volume and integration material point, which is also called as collocation 

point. In the case of a uniform grid, the distance among the material points is same 

in all directions. 

 

Fig. 5 Discretisation of PD domain in 2-Dimensional configurations. 

    For a generic material point x , the spatial integration is performed only over the 

part of the body that is contained within the horizon of the particle x . Therefore, for 

a generic PD particle ix , the discretised form of Eq. (1) can be written as 
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MI MI j MI i j i j
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C t f C t C t V  x x x x x                    (23) 

where M is the number of family members of particle ix . Concerning the time 

integration, implicit time integration scheme has been utilized in this study. Eq. (23) 

can be solved by using either explicit or implicit time integration schemes. The 

advantage of an implicit time integration scheme is the numerical stability of the 

method regardless of the value of the time step size. This is particularly important 

when modelling corrosion, since the timescale of the problem can range from 

seconds to years. In this study, a novel approach, based on the analogy between heat 

transfer and metal ions diffusion, is used to exploit the implicit solver implemented 

in the commercial finite element analysis software ANSYS 14.5. 

    Thus, the PD model of pitting corrosion can be represented by the following 

thermal finite elements available in ANSYS: 

 MASS 71: Thermal mass elements are used to represent the PD particles. 

The only degree of freedom is the temperature, which, in our model, 

corresponds to the metal ions concentration [mol/m3]. 

 COMBIN 14: Thermal spring elements are utilized to represent the PD 

bonds. These elements are used to connect the thermal mass elements to 

each other. As for the MASS 71 elements, the only degree of freedom is the 

temperature. 

The expression for the real constant ANSYSd  of the generic COMBIN 14 element can 

be written as 

                                        
2

(2 ) MI cf c
ANSYS

d s V v V
D d

l

   
                                     (24) 



 

where l in [m] represents the length of the bond and V  in [m3] represents the 

volume a material point. In Eq. (24), cfs  and cv  are surface and volume corrections, 

respectively, which are explained in Madenci and Oterkus (2014). 

5. Numerical results  

    In this section, three different cases are presented. In the first case, pitting 

corrosion evolution in a stainless steel plate is simulated for validation purposes. In 

the second case, more realistic pit morphologies are generated. Finally, the effect of 

intermetallic particles on pitting corrosion evolution is investigated. 

5.1 Pitting corrosion in a stainless steel plate 

    In order to validate the current approach, a 2D plate of dimensions 0.1 mm x 0.1 

mm and thickness of 1 μm is considered. As shown in Fig. 6, the top edge of the 

plate is damaged and the initial pit is filled with 1M NaCl aqueous solution, in 

which the concentration of metal ions is initially null. The volume occupied by the 

solution is assumed to be much larger than that of the metal, i.e. austenitic stainless 

steel grade 304. This assumption allows to represent the bulk of the corrosive 

solution with a zero-concentration boundary condition throughout the simulation. 

 

Fig. 6 2D pitting corrosion model: initial pit (blue colour) and metal (grey colour) 



 

 

The material data can be found in Section 3. The radius of the initial pit is 10 μm. 

The plate is discretised with 100 x 100 PD nodes and the resulting value of grid 

spacing and horizon’s radius are 1 m    and 4 m   , respectively. At the 

beginning of the simulation, all the nodes belonging to the metal have a 

concentration of metal ions equal to solidC . The appropriate time step size is found 

by performing a convergence analysis. As shown in Fig. 7, a time step size of 0.5 s 

can be considered as a suitable value. The results obtained by using the present 

model are in qualitative agreement with the numerical results presented in Chen and 

Bobaru (2015), where a time step size of 0.05 s is used (see Fig. 8). 

 

Fig. 7 Time step size convergence analysis for the damage index map at time = 20 s and η = 

0.2 V: dt = 5 s (A), dt = 0.5 s (B), dt = 0.05 s (C) 

 

 



 

Fig. 8 Damage index map at time = 20 s for the case with η = 0.2 V reported in Chen and 

Bobaru (2015)  

    In Figs. 7 and 8, only the particles in solid phase are shown. The liquid/solid 

interface does not advance within the first 20 s, but a layer constituted by solid 

particles with damage index value equals to one is formed at the interface. As 

explained earlier, if a generic particle has a damage index value equals to one, it 

means that all of its bonds have been broken. Thus, in this case, the particle is totally 

disconnected from the rest of the body and the solution can penetrate underneath. In 

order to mimic this phenomenon, the approach used in Chen and Bobaru (2015) is 

adopted. According to this approach, the phase of the node is changed from solid to 

liquid when 1d   even if satC C . As shown in Fig. 9, the results produced by the 

present model are in quantitative agreement with the study reported in Chen and 

Bobaru (2015). 

 

Fig. 9 Damage index map at time = 20 s for the case with η = 0.2 V: present numerical 

model (A) and other numerical model (Chen and Bobaru, 2015) (B) 

5.2 Realistic pit morphologies 

    In reality, corrosion pits can have complex geometries, which are often very 

different from the simple case considered in the previous section. The PD model of 

pitting corrosion can be extended to model realistic pit morphologies. There may be 



 

several different approaches that can be used in this regard. The procedure adopted 

in this study, which is used during the preparation of the model, consists of the 

following two steps: 

1. Selection of the region of the domain where the pit is expected to propagate. 

2. For all the nodes that do not belong to this region, an artificial effective 

coefficient of diffusion in the metal *
sdD  is used. The ratio between *

sdD  and 

sdD  is always smaller than 1 and is called “coefficient of pit morphology” 

pmc : 

                                                 
*

1sd
pm

sd

D
c

D
                                                (25) 

The following boundary condition is applied to the blue region of length 6 μm in 

Fig. 10 as ( , ) 0C x t  . 

 

Fig. 10 PD model for the prediction of realistic pit morphologies: metal (grey colour) and 

initial liquid/solid interface (blue colour) 

    As shown in Fig. 11, if the morphology of the pit is known a priori, then the PD 

model is able to reproduce the expected shape of the pit cavity. The material 



 

properties and numerical parameters used for the simulations in Fig. 11 are the same 

as those used in previous section. The only difference is the introduction of pmc , 

which is assumed to be 1%. 

 

Fig. 11 Realistic pit morphologies (Hoeppner, 2011) (A), damage index map obtained with 

the present numerical model (B) 

5.3 Pitting corrosion in a cluster of cathodic intermetallic particles 

    It is well-known that the metallurgical characteristics of the material can affect the 

evolution of corrosion pits. In this analysis, pitting propagation in a cluster of 

cathodic intermetallic particles (IMPs) is investigated. The material properties and 

numerical parameters are the same as those used in the previous section. IMPs are 

created through node selection during the generation of the model and they are 

represented by the application of the following boundary condition to all those nodes 

that belong to the IMPs domain as ( , ) solidC x t C . 



 

 

Fig. 12 PD model of pitting corrosion in a cluster of IMPs: metal (blue colour), corrosive 

solution (yellow colour) and IMPs (red colour) 

    As for the analyses described in previous sections, the following boundary 

condition is applied to the yellow region of length 6 μm in Fig. 12 as ( , ) 0C x t  . As 

shown in Fig. 13, pit damage is channelled by the cluster of IMPs and the lower part 

of the plate is partially shielded by the IMP at the bottom of the cluster. In order to 

better visualise the pit cavity, only solid nodes are shown in Fig. 13. 

 

Fig. 13 Pit evolution in a cluster of IMPs. Damage index map at time = 2500 s: no 

dissolution (blue colour) and close to dissolution (red colour) 



 

6. Conclusions 

    The ultimate goal of this study was to use peridynamics to produce a non-

conventional and more effective numerical framework that can be helpful in failure 

analysis and design of new corrosion-resistant materials. For this purpose, a new 

numerical model based on peridynamics to predict pitting corrosion damage was 

developed by extending an existing model to allow for 1) the reproduction of 

realistic pitting morphologies, 2) modelling of microstructural effects such as the 

presence of intermetallic particles and 3) the reduction of the computational cost of 

the simulations. Three different cases were considered to validate the developed 

model and demonstrate its capabilities. In the first case, pitting corrosion evolution 

in a stainless steel plate was simulated and a suitable time step size was determined 

after performing a convergence analysis. In the second case, realistic pit 

morphologies were obtained by using the current framework. Finally, the effect of 

intermetallic particles on pitting corrosion evolution was investigated and it was 

found that the intermetallic particles have a significant effect on pitting corrosion 

damage evolution.  
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