Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

A hybrid modular multilevel converter for medium-voltage variable-speed motor drives

Li, Binbin and Zhou, Shaoze and Xu, Dianguo and Finney, Stephen J. and Williams, Barry W. (2017) A hybrid modular multilevel converter for medium-voltage variable-speed motor drives. IEEE Transactions on Power Electronics, 32 (6). 4619 - 4630. ISSN 0885-8993

[img]
Preview
Text (Li-etal-TPE-2017-A-hybrid-modular-multilevel-converter)
Li_etal_TPE_2017_A_hybrid_modular_multilevel_converter.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Modular multilevel converters (MMC) have revolutionized the voltage-sourced converter-based high-voltage direct current transmission, but not yet got widespread application in medium-voltage variable-speed motor drives, because of the large capacitor voltage ripples at low motor speeds. In this paper, a novel hybrid MMC topology is introduced, which significantly reduces the voltage ripple of capacitors, particularly at low motor speeds. Moreover, this topology does not introduce any motor common-mode voltage; as a result, there are no insulation and bearing current problems. Additionally, the current stress can remain at rated value throughout the whole speed range; thus, no device needs to be oversized and converter efficiency can be ensured. Operating principle of this hybrid topology is explained, and control schemes are also developed. Validity and performance of the proposed topology are verified by simulation and experimental results.