
This version is available at https://strathprints.strath.ac.uk/60026/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
PV Single Phase Grid Connected Converter: DC-link Voltage Sensorless Prospective

N.E. Zakzouk, A.K. Abdelsalam, A.A. Helal
Electrical and Control Engineering Department
Arab Academy for Science and Technology (AAST)
Alexandria, Egypt

B.W. Williams
Electronics and Electrical Engineering Department
Strathclyde University
Glasgow, United Kingdom

Abstract—In this paper, a DC-link voltage sensorless control technique is proposed for single-phase two-stage grid-coupled photovoltaic (PV) converters. Matching conventional control techniques, the proposed scheme assigns the function of PV maximum power point tracking (MPPT) to the chopper stage. However, in the inverter stage, conventional techniques employ two control loops; outer DC-link voltage and inner grid current control loops. Diversely, the proposed technique employs only current control loop and mitigates the voltage control loop thus eliminating the DC-link high-voltage sensor. Hence, system cost and footprint are reduced and control complexity is minimized. Furthermore, removal of the DC-link voltage loop proportional-integral (PI) controller enhances system stability and improves its dynamic response during sudden environmental changes. System simulation is carried out and an experimental rig is implemented to validate the proposed technique effectiveness. In addition, the proposed technique is compared to the conventional one under varying irradiance conditions at different DC-link voltage levels, illustrating the enhanced capabilities of the proposed technique.

Keywords—Photovoltaic; MPPT; grid connection; DC-link voltage control; Single Phase Converter

I. Introduction

Currently, renewable energy resources are supplying significant share of global energy generation due to the increasing costs and decreasing reserves of fossil-fuels, as well as their environmental problems. Among the former, photovoltaic (PV) energy has gained much interest as a less pollutant and noise-free resource that has the capability to be expanded and utilized in rural areas [1-2].

Common distributed energy resources (DERs) are increasingly being connected to utility for best utilization of their produced electric power [3-7]. A number of grid interfacing methods have been proposed for PV-grid connection [8, 9], among which string inverter topology is widely used at present. It overcomes the drawbacks of old centralized inverter topology where multiple PV strings are connected to a central inverter, thus suffering from non-flexibility and power losses due to maximum power point tracking (MPPT) mismatch. Alternatively, for string inverter method, a number of PV modules are connected in a series arrangement called a string and each has its own inverter [10] and the system can be expanded by additional strings with their associated inverters [11, 12].

For successful interface of PV strings with the grid, a number of requirements arise [13, 14]. First, maximum power point tracking (MPPT) of the PV string is mandatory to maximize system efficiency as the performance of a PV source relies on the operating irradiance and temperature conditions [15]. Furthermore, voltage regulation at the inverter DC-link and grid current control are essential. Hence, two topologies exist which are single-stage and two-stage topologies [8]. The single-stage topology involves a single
inverter stage which achieves PV MPPT and PV-grid interface functions. Hence, component count is minimized; increasing conversion efficiency [16, 17]. A major drawback of this topology is voltage ripples on the DC bus resulting from double line-frequency grid power oscillations due to single-phase connection [18]. Hence, for a single-stage topology, the inverter must be designed to handle these ripples using large electrolytic capacitors to limit the ripples' propagation to the PV output power [19]. These capacitors are a limiting factor of the inverter lifetime and reliability. Two-stage topology is presented, as another alternative, where a power decoupling DC-DC stage is added before the inverter stage, at the cost of additional components and losses [20, 21]. However, this additional stage decouples the energy change between the PV string and the DC-link capacitor of the output inverter stage. Furthermore, this additional stage can boost the PV voltage level thus expanding its operating range and increasing flexibility for the number of PV modules used [8].

Conventionally, the first DC-DC chopper stage achieves MPPT while the second inverter stage delivers energy to the grid [22-25]. PV string inverter features: outer DC-link voltage control loop and inner grid current control loop. The former regulates the DC-link voltage and adjusts the reference grid current to guarantee power flow to grid and satisfy power balance at DC-link, while the latter forces the inverter to produce near-unity power factor sinusoidal line current.

Hence, for conventional control strategy, measurements of PV voltage and current are required to achieve MPPT. Furthermore, sensing DC-bus voltage is mandatory for the outer DC-link voltage control loop and measuring grid voltage and current is essential for the inner grid current control loop. Sensorless control techniques have been proposed for this configuration to reduce these measurements and in-turn lessen the required sensors, simplifying system structure and reducing size and cost. However, most researches involve elimination of PV voltage and/or current sensors [26-31]. These techniques are based on sensorless MPPT control scheme fact that as the DC-link voltage is kept constant by the controller action at steady-state, PV generated power and grid side power should be in balance [32-33]. This will force the grid current’s amplitude to be proportional to the PV generated power. Thus, varying the chopper duty cycle to maximize the line current amplitude will result in PV MPPT without the need of PV sensors. However, overall system response deteriorates in comparison with that of the conventional method which directly detects PV power. This can be related to the fact that the response of this sensorless MPPT operation directly depends on the response of the inverter DC-link voltage control loop and consequently its grid current control loop [34].

In this paper, a DC-link voltage sensorless technique is proposed based on the fact that if the PV maximum power is forced to flow to the grid, then power balance at the inverter DC-link will be satisfied and DC-link voltage will stabilize by nature without the need of outer DC-link voltage control loop. Hence, the proposed scheme still requires PV sensors to directly calculate the PV power, but eliminates the high cost DC-link voltage sensor, thus reducing system footprint and cost. Furthermore, the removal of the DC-link voltage loop controller simplifies overall control scheme, enhances system stability and improves the dynamic response during
irradiance changes. Simulation and experimental results verify the proposed scheme effectiveness at different DC-link voltage levels and confirm its superior performance over that of the conventional scheme under varying irradiance conditions.

II. System Under Investigation

The considered system is a 1.5 kW, 220 V, 50 Hz single-phase two-stage grid-connected PV system as shown in fig. 1 (a). The first stage is a boost converter responsible for MPPT process, voltage amplification, and decoupling between the PV source and the DC-link. The second stage features a current-controlled voltage source inverter (VSI) for grid interface. The PV source, in this paper, is a string configuration which consists of ten KD135SX_UPU PV modules connected in series. The PV array specifications, in addition to the system design, are listed in Appendix 1 TABLE I;

![System Diagram](image)

Fig.1: PV-grid connected system under investigation (a) system configuration, (b) power balance at inverter DC-link, (c) Mean DC-link voltage, and (d) Average active grid power.

III. Power Balance at DC-Link

Equation (1) represents the power balance at the inverter DC link [19, 22, 23, 41and 42], as illustrated in fig. 1 (b).

$$P_{dc} = P_{inv} + P_{cap}$$

(1)

where P_{dc} is DC-link input power, P_{inv} is instantaneous power supplied to inverter, and P_{cap} is instantaneous DC capacitor power.

$$P_{cap} = v_{dc} C_{dc} \frac{dv_{dc}}{dt}$$

(2)

where v_{dc} is the instantaneous DC-link voltage.

Assuming the AC line current (i_g) is sinusoidal and in-phase with the AC grid voltage (v_g), equation (3) results:

$$P_{inv} = P_g = v_g i_g \sin^2 \omega t = \frac{v_g i_g}{2} (1 - \cos(2\omega t)) = P_g (1 - \cos(2\omega t))$$

(3)
where P_g is the instantaneous active power injected to the grid assuming unity power factor, V_g is the grid voltage, I_g is the injected grid current, and P_g is the average active power injected into the grid.

Thus, by substituting (2) and (3) in (1), equation (4) results:

$$P_{dc} = P_g (1 - \cos(2\omega t)) + v_{dc} C_{dc} \frac{dv_{dc}}{dt}$$

(4)

From (4), it is clear that there are two power components inside the DC-link capacitor. The first is the average power difference between P_{dc} and P_g, which is a DC component that causes a linear increment or decrement in the DC-link voltage. The second one is the grid power ripple of twice the AC mains frequency, which results in a double line-frequency ripple in the DC-link voltage. The DC-bus capacitor should buffer this power differences as well as minimize the voltage ripple [19]. In order to achieve the latter, energy is acquired by the DC capacitor. Energy balance equation can be obtained by integrating (4) over one cycle:

$$E_{dc} = E_g + \frac{1}{2} C_{dc} v_{dc}^2$$

(5)

where E_{dc} is the input energy to the DC-link, E_g is the energy captured by grid and $\frac{1}{2} C_{dc} v_{dc}^2 = E_{cap}$ which is the energy stored in DC-link capacitor.

As shown in in fig. 1 parts (c) and (d); for the same DC power, as DC-link voltage level increases, the power transferred to the grid is reduced.

This is mainly related to the fact that besides the energy acquired by the DC capacitor, there are other parameters that increase grid losses and are DC-link voltage dependent as well. These are converter power losses ($p_{conv-loss}$) which include switching and semiconductor losses, in addition to losses in DC capacitor equivalent series resistance [43].

Equation (4) doesn't take these losses into account although this would introduce a disturbance into the power balance equation that results in a steady-state error in the DC-link voltage. Thus, they must be taken into account [41] as follows:

$$P_{dc} = P_g (1 - \cos(2\omega t)) + v_{dc} C_{dc} \frac{dv_{dc}}{dt} + p_{conv-loss}$$

(6)

In order to satisfy the power balance equation at the inverter DC-link, the DC-link voltage should be kept constant at a certain predetermined level. This will ascertain the PV power is transferred to the grid which guarantees power flow from the PV string to utility. Hence, a control strategy is mandatory to achieve DC-link voltage regulation and the grid interface.
IV. Control Techniques for Grid–connected PV Converters

PV-grid interface is commonly achieved using conventional DC-link voltage sensored control technique [22-25]. However, in this paper, a DC-link voltage sensorless technique is proposed to realize this interface. Control schemes of both techniques are modelled, analysed and their performance is compared to validate the proposed scheme feasibility.

A. Conventional Control Technique

The conventional control scheme is shown in fig. 2(a). Boost chopper switching is directly controlled using the appropriate duty ratio produced by the MPPT algorithm.

Various MPPT techniques are presented in literature [44, 45] among which variable-step incremental conductance (IncCond.) technique is of special interest due to its simplicity, high accuracy and less computational burden [46-48]. For better performance and simpler implementation, the modified variable step-size IncCond. technique, presented in [49], is applied.

On the other hand, DC-link voltage regulation as well as grid coupling are achieved using current controlled VSI that inhibits two control loops; the outer DC-link voltage control loop, fig. 2(b), and the inner grid current control loop, fig. 2(c).

1. Inner grid current control loop

The inverter is required to output a sinusoidal grid current with acceptable THD and near-unity power factor. Thus, the output of the DC voltage controller, which represents the reference grid current amplitude, is multiplied by a sinusoidal unit vector which is obtained from a phase-locked loop (PLL) synchronized with the grid voltage. Then, the inner current loop controller forces the grid current to match this sinusoidal reference. The block diagram of the inner grid current control loop is shown in fig. 2(b).

The most common types of controllers used for the inner current loop are; proportional-integral (PI) with feed-forward and proportional-resonant (PR) controllers [50-54]. However, PR controllers' performance outweighs that of the traditional PI ones, when regulating sinusoidal signals [13]. The former have the ability to remove the current's magnitude and phase angle steady-state errors without the need of voltage feed forward unlike traditional PI controllers. Thus, an ideal PR controller is applied for the inner grid current control loop with a gain given as [52-54];

\[
G_{pr}(s) = K_{p-r} + K_{i-r} \frac{s}{s^2 + \omega^2}
\]

(7)

where \(K_{p-r}\) is proportional part gain, \(K_{i-r}\) is the resonant part gain and \(\omega\) is the resonant frequency of the controller. The desired sinusoidal signal’s frequency is chosen as the resonance frequency, which is the grid line angular frequency in this case. The PR controller gains are designed achieving high gain (almost 50 dB) at a bandwidth around the resonant frequency (about 4rad/s) as shown in the bode plot in the fig. 2(d), which minimizes the sensitivity of the controller to slight grid frequency
variations. However, it should be remarked that if severe grid frequency variations are registered in the utility network, a modified PR controller is necessary [55, 56] or a non-ideal PR controller can be used to give a wider bandwidth around the resonant frequency [57, 58].

The converter operates at high switching frequency, so the PWM block can be represented by a simple gain [23, 24]

\[K_{PWM} = \frac{V_{msin}}{V_{tr}} \]

where \(V_{tr} \) is the amplitude of the triangular carrier signal.

2. *Outer DC-link voltage control loop*

This loop is responsible for DC-link voltage regulation by adjusting \(I_{gref} \) which is the amplitude of the sinusoidal reference grid current that must be in-phase with the grid voltage (\(v_g \)). The current amplitude (\(I_{gref} \)) represents the active component of the reference grid current which indicates the instantaneous amount of power available at the DC side of the inverter (\(p_{inv} \)) [41]. By accurately adjusting this current amplitude and using a fast grid current controller, the power at the inverter DC side is transferred to grid. Thus, power balance at the DC-link is achieved which makes \(V_{dc} \) stabilizes at the required level. However, in order to compensate for system losses given in (12) (i.e. inverter losses and losses due to the parasitic series resistance of \(C_{dc} \)), a decrease in the power available at the inverter side occurs which in-turn decreases \(I_{gref} \). The latter imposes losses on the grid.

The block diagram of the outer DC-link voltage control loop is shown in fig. 2(c). The implemented voltage controller can be a simple proportional controller [24] or a proportional-integral (PI) one [23] to minimize the DC-link voltage steady-state error. The latter is used and it is represented by the gain \(G_{PI}(s) \) where \(K_{p} \) and \(K_{i} \) are proportional and integral gains of the DC-link voltage PI controller respectively:

\[G_{PI}(s) = K_{p} + \frac{K_{i}}{s} \]

These gains must be precisely designed for a low cross-over frequency (10-20 Hz) in order to attenuate the magnitude of the double line-frequency DC-link voltage ripples. Thus, oscillations in grid current reference are limited. Otherwise, grid current THD may exceed the limit and a larger DC capacitor is required, to overcome these oscillations, which in-turn reduces the inverter life-time. To illustrate this issue, the PI gains are first designed with initial values computed from Ziegler-Nichols method followed by successive tuning aiming at achieving grid current THD within IEEE 519 Std. [59]. Hence, the outer loop controller gains are selected as; \(K_{p}=0.01 \) and \(K_{i}=0.5 \) giving a cross-over frequency of almost 20Hz as shown in the bode plot in fig. 2(e). In this case, the system shows minimal grid current THD however at the cost of slower response during changes. If \(K_{p} \) is increased to 0.1 to enlarge its effect versus integral gain and in-turn fasten system response, grid current THD breaks
harmonics limits [59], as shown in fig. 2(f). The DC-link voltage in addition to the grid current controllers detailed parameters' tuning is illustrated in details in Appendix 2.

The inner grid current control loop, with a bandwidth of a few kHz and unity feedback, can be represented by a unity gain at the low frequency range considered for the voltage control loop [23] as shown in fig. 2(c).

The relationship between variations in the fundamental grid current magnitude and the mean DC-link voltage can be calculated using the average power balance equation derived from differentiation of (5) by time, assuming that the converter is lossless.

\[P_{dc} = P_g + \frac{d}{dt} \left[\frac{1}{2} C_{dc} V_{dc}^2 \right] \]

(10)

For simplified sensitivity analysis, when studying relationship and correlation between certain system variables, other variables of least contribution and effect, on the studied variables, can be partially eliminated. Hence, for determining the impact of the grid current magnitude variation on the average DC-link voltage, one neglects \(P_{dc} \) [23]. Assume zero PV power, then \(P_{dc} = 0 \), DC-link capacitor energy (\(E_{cap} \)) is solely affected by grid power as follows;

\[\frac{dE_{cap}}{dt} = \frac{d}{dt} \left[\frac{1}{2} C_{dc} V_{dc}^2 \right] = -P_g \]

(11)

\[\frac{d}{dt} \left[\frac{1}{2} C_{dc} V_{dc}^2 \right] = -\frac{V_g^2 g_{g}^2}{2} \]

(12)

Applying small perturbations around the operating point leads to:

\[\frac{d}{dt} \left[\frac{1}{2} C_{dc} (V_{dc} + v_{dc-pert})^2 \right] = -\frac{V_g (I_g + i_{g-pert})}{2} \]

(13)

where \(v_{dc-pert} \) and \(i_{g-pert} \) are the small perturbations applied around the mean DC-link voltage and the grid current amplitude respectively. Neglecting steady-state values and square of small perturbations

\[\frac{d}{dt} \left[\frac{1}{2} C_{dc} 2V_{dc} v_{dc-pert} \right] = -\frac{V_g i_{g-pert}}{2} \]

(14)

Hence, equations (15) and (16) can be concluded;

\[C_{dc} V_{dc} s V_{dc}(s) = -\frac{V_g I_g(s)}{2} \]

(15)

\[\frac{V_{dc}(s)}{I_g(s)} = -\frac{V_g}{2sC_{dc}V_{dc}} \]

(16)
In the proposed technique, MPPT is achieved, similarly as in the conventional technique, by sensing the PV voltage and current. However, the proposed technique involves only one control loop in the second inverter stage which is the grid current control loop, thus mitigating the inverter outer DC-link voltage control loop with its PI controller which in turn simplifies the overall control scheme. Moreover, the high cost DC-link voltage sensor is no longer required, reducing the system footprint and cost. The proposed control scheme is shown in fig. 3(a).

Fig. 2: Conventional control technique; (a) control scheme, (b) inner grid current control loop, and (c) outer DC-link voltage control loop, (d) bode plot of grid current loop PR controller, (e) bode plot of DC-link voltage loop PI controller, (f) Grid current THD at different irradiance level for 2 values of proportional gain \(K_{P-i} \) applied in the DC-link voltage PI controller.

B. Proposed DC-link Voltage Sensorless Control Technique

In the proposed technique, MPPT is achieved, similarly as in the conventional technique, by sensing the PV voltage and current. However, the proposed technique involves only one control loop in the second inverter stage which is the grid current control loop, thus mitigating the inverter outer DC-link voltage control loop with its PI controller which in turn simplifies the overall control scheme. Moreover, the high cost DC-link voltage sensor is no longer required, reducing the system footprint and cost. The proposed control scheme is shown in fig. 3(a).
In the conventional technique, DC-link voltage regulation and I_{ref} adjustment are achieved using the DC-link voltage controller as explained in the previous subsection. Alternatively, in the proposed method, the DC-link voltage is stabilized and I_{ref} is adjusted without the need of an outer DC-link voltage control loop. In the proposed control technique, the PV voltage and current are sensed to achieve MPPT. Depending on the tracked maximum PV power value, the amplitude of the reference grid current is adjusted. The grid current controller forces the inverter to produce a sinusoidal current with a magnitude matching that of the reference current which corresponds to the tracked maximum PV power. Thus, the PV maximum power is forced to flow to the inverter AC side satisfying the power balance at inverter DC-link hence forcing the DC-link voltage to stabilize by nature at a certain level without the need of a voltage controller.

1. **Without system losses compensation**

The proposed control technique, when adjusting I_{ref}, must guarantee that the tracked PV maximum power is transferred to the grid so that power balance is achieved at inverter DC-link and V_{dc} stabilizes by nature without the need of DC-link voltage controller. Hence, I_{ref} is determined by dividing PV maximum power at certain environmental condition (P_{PV}) by grid voltage rms value (V_g), as shown in (17). This amplitude is then multiplied by a sinusoidal template of the grid voltage derived from PLL. The grid current PR controller, similar to the one employed in the convention control technique, forces the inverter to produce a sinusoidal grid current that matches this reference. The uncompensated grid current control loop is shown in fig. 3(b).

$$I_{\text{ref}}(\text{uncomp}) = \sqrt{2} \frac{P_{\text{PV}}}{V_g}$$ (17)

However, this uncompensated scheme doesn't take into account system losses which include converter power electronics switches' losses and the losses due to the parasitic series resistance in C_{dc}. Thus, a disturbance in the power balance at DC-link occurs and the DC-link voltage reaches value less than grid voltage amplitude (V_g) which means that the modulation index (m_a) may reach unity, imposing harmonics in the grid current beyond acceptable limits as will be demonstrated at the end of this subsection.

2. **With system losses compensation**

System losses must be taken into account to guarantee power balance at inverter DC-link. However, due to the absence of DC-link voltage control loop in the proposed technique, there must be an alternative way to compensate for these losses. Since these losses decrease the active grid power, then the grid current in turn decreases. Thus, the reference grid-current amplitude must be readjusted by a compensating component as shown in (18):

$$I_{\text{ref}}(\text{comp}) = \sqrt{2} \left(\frac{P_{\text{PV}}}{V_g} - I_{\text{comp}} \right)$$ (18)
where I_{comp} is the rms value of the compensating current (i_{comp}). This current represents the decrease in grid current amplitude, and in turn the decrease in grid reference active power to compensate for system losses. Thus, power balance and flow are ensured, achieving DC-link voltage stabilization. According to I_{comp} value, V_{dc} can be kept at a level that ensures that $M \leq 1$ which results in acceptable grid current THD. The proposed compensated grid current control loop is shown in fig. 3(c).
At certain V_{dc} level, as P_{pv} increases, system losses increase which in turn requires the increase of I_{comp} to compensate for these losses. Thus, for constant V_{dc}, I_{comp} depends on P_{pv} and varies proportionally with it however in a non-linear form. Moreover, as V_{dc} increases, for constant P_{pv}, system losses increases which results in an increase in I_{comp} to compensate. Figure 3(d) shows the empirically obtained non-linear relation between P_{pv} and I_{comp} at two different V_{dc} values for the investigated system. It can be noticed that at $V_{dc}=320V$ (i.e. $m=1$), I_{comp} has lower value which in turn decreases losses imposed on grid.

Hence, mapping between P_{pv} and I_{comp}, at a predetermined V_{dc} level, is system-dependent and mandatory in order to achieve the proposed DC-link voltage sensorless scheme. The P_{pv}-I_{comp} mapping can be implemented using a simple look-up table. However, for more precise mapping and better system performance, a simple feed-forward back-propagation artificial neural
network (ANN) is proposed in this paper featuring an input layer, a hidden layer and an output layer as shown in fig. 3(e). The input represents the PV power while the output layer generates the compensating current corresponding to the input PV power and required to stabilize V_{dc} at a predetermined level. The applied hidden layer features 10 sigmoid neurons. The links between the nodes are all weighted. Successful fitting between P_{PV} and I_{comp} depends on the hidden layer and how precise the ANN is trained to optimize these weights [60]. The utilized ANN is off-line trained and optimized to give almost zero mean square error for the studied case.

Fig. 3(f) flow chart illustrates how P_{PV}-I_{comp} empirical non-linear relation is extracted. The model runs for the proposed scheme as shown in figure. Solar irradiance is varied as steps of 10W/m2 leading to P_{PV} variations from 0 to rated panels power. V_{dc} is recorded via hysteresis comparator to generate the required I_{comp} that leads V_{dc} to be in a tolerable range around. At each P_{PV} level, the corresponding I_{comp} that ensures V_{dc} approaching the reference is recorded. Finally, a matrix of P_{PV}-I_{comp} is achieved. The obtained P_{PV}-I_{comp} data can be implemented in system simulation/experimental setup as a look-up table. For more enhanced operation, the same procedure can be repeated considering variable atmospheric temperature, grid harmonics, measurement errors, etc., as much as the designer wants the system to be robust. The resultant data can be utilized as off-line training sets for the suggested ANN.

Both the conventional and the proposed control techniques utilizes similar Proportional-Resonant (PR) controller for the grid current control, i.e. the VSI main controllable variable. The output of the grid current control PR controller is a sinusoidal signal; nature of PR controllers that deals with sinusoidal signals, having the same grid voltage frequency with amplitude varies to ensure grid current convergence to its reference. Hence, the grid current output control signal is utilized as the modulating signal V_{main} for the VSI SPWM generation. For fixed amplitude carrier signal $V_{carriers}$, the VSI modulation index m_a varies linearly with the grid current PR controller output signal V_{main}. For over-modulation prevention purpose, a simple limiter is added following the PR controller block that limits the modulation index exceed unity as illustrated in fig.2(a) and fig.3(a)

V. Optimal DC-link Voltage

For most appropriate DC-link voltage level determination, the considered system is simulated once using the conventional control technique and again using the proposed DC-link voltage sensorless technique, for different DC-link voltage levels, under varying irradiance.

Regarding the first case with the conventional technique, the steady-state performance (regarding $THDi$ and grid power losses) is presented for four V_{dc} values at different irradiance levels as shown in fig. 4 parts (a) and (b). The DC-link voltage value directly affects the converter loss and contributes as well in the grid current $THDi$ level. For $V_{dc}=300V$ i.e. $m_a>1$, $THDi$ increases beyond limits while for $V_{dc}= 320 V, 400V$ or $500V$ i.e. $m_a<1$, $THDi$ is within standards as shown in fig. 4(a) [59].
Moreover, for the same irradiance level (i.e. fixed P_{pv}), as V_{dc} increases, system loss increases. The latter decreases the net power capable to be transferred to the grid, as shown in fig. 4(b). Hence, under the conventional technique, the best compromise between power loss and $THDi$ occurs at V_{dc}=320V where m_a=1.

Regarding the second case with the proposed sensorless technique, steady-state results (regarding grid current THD and grid power losses) are presented at variable irradiance levels, for the uncompensated scheme as well as the compensated scheme for two DC-link voltage levels, as shown in fig. 4 parts (c) and (d). Regarding the uncompensated scheme, V_{dc} will reach about 305V which is less than V_o (311V) as explained before. Although, this will decrease the grid average power losses due to V_{dc} level decrease, while the harmonics level in the grid current will exceed the permitted level according to IEEE Std. 519 as m_a>1. Considering the compensated scheme, the system performance is almost similar to that acquired by the conventional DC-link voltage sensored technique regarding the $THDi$ and grid power losses. Consequently, for the proposed technique with the compensated scheme, the best compromise between the $THDi$ and grid power losses occurs at V_{dc}=320V same as for the conventional scheme. This proves the validity and feasibility of the proposed DC-link sensorless technique with the proposed system losses compensation scheme.

Fig. 4: Steady-state results at varying irradiance levels for different DC-link voltage values regarding (a) Conventional technique’s grid current THD, (b) Conventional technique’s power losses as percentage of the relative PV power at the current irradiance level, (c) Proposed technique’s grid current THD and (d) Proposed technique’s grid power losses as percentage of the relative PV power at the current irradiance level.
VI. Simulation Results Analysis

In this paper, the transient and steady-state performance of the conventional scheme is compared to that of the proposed one, under two step changes in irradiance; from 1000 W/m2 to 600 W/m2 at 6s then from 600 W/m2 to 800 W/m2 at 9s.

Both schemes are capable of adjusting the DC-link voltage at 320V during different irradiance levels as shown in fig. 5 parts (a) and (b) as well. However, injected grid powers, achieved by both schemes, experience losses as shown in fig. 6 parts (a) and (b), due to converter losses besides the DC-link capacitor parasitic resistance. The DC-link voltage stabilizes at 320V under both control schemes.

At start-up (fig. 5 (c), and fig. 6 (c)), V_{dc} overshoot in the conventional technique is about 1.6 times that of the proposed one, thus C_{dc} of the former must handle this voltage increase. On the other hand, V_{dc} adjustment takes much more time, in the proposed scheme, which increases transient power losses. However, once the required V_{dc} level is reached, the proposed scheme shows faster transient response during irradiance changes owing to DC-link voltage controller elimination. This can be shown as follows;

During the first step change in irradiance, at t=6s, irradiance decreases from 1000 W/m2 to 600 W/m2, thus P_{PV} will decrease causing a transient decrease in V_{dc} till it is regulated to 320V. Analysing fig. 5(d), and fig. 6(d), the conventional scheme shows slower response by about 0.3s. Furthermore, during the conventional scheme's longer transient period, V_{dc} decreases to 300V (6.3% V_{dc} undershoot) i.e. $m_a > 1$, thus $THDi$ will go beyond acceptable limits nearly 31.42 %. On the other hand, its $THDi$ is within limits (6.3%) during proposed scheme's transient period. During the second step change at t= 9 s, irradiance increases from 600 W/m2 to 800 W/m2, thus P_{PV} increases causing transient increase in V_{dc}. Considering fig. 5(e) and fig. 6 (e), the conventional scheme exhibits settling time of about 0.2s to reach its steady-state and experiences transient V_{dc} increase to 360 V (12.5% V_{dc} overshoot). On the contrary, during this step change, the proposed scheme shows faster response with t_s of almost 0.07s and experiences nearly non-significant V_{dc} increase during its transient period.

Steady-state results are shown in Table II, include peak-peak DC voltage ripple, THD and power factor of grid current, and utility power losses for both schemes.

<table>
<thead>
<tr>
<th>Irradiance (W/m2)</th>
<th>Control technique</th>
<th>Transient for V_{dc}</th>
<th>Steady-state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Over/Under Shoot</td>
<td>$I_{setting}$ (A)</td>
</tr>
<tr>
<td>Start-up at 1000</td>
<td>Conventional</td>
<td>+ 6.875%</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>+ 4.375%</td>
<td></td>
</tr>
<tr>
<td>From 1000 to 600</td>
<td>Conventional</td>
<td>- 6.25%</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>- 3.13%</td>
<td>0.1</td>
</tr>
<tr>
<td>From 600 to 800</td>
<td>Conventional</td>
<td>+ 12.5%</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>+ 1.5%</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Fig. 5: DC-link voltage, at the considered varying irradiance conditions, acquired by (a) conventional technique (b) proposed technique, with a magnified view for each zone at (c) 1000 W/m2, (d) 600 W/m2, (e) 800 W/m2.

Fig. 6: Average grid power, at the considered varying irradiance conditions, acquired by (a) conventional technique (b) proposed technique, with a magnified view for each zone at (c) 1000 W/m2, (d) 600 W/m2, (e) 800 W/m2.
VII. Experimental Implementation

An experimental setup, for the system under investigation, is implemented in order to hold a practical comparison between the proposed sensorless technique and the conventional one.

For fair comparison, it's mandatory to test these techniques under controlled conditions of irradiance and temperature. This ensures similar environmental conditions for both techniques when the tests are carried out. Furthermore, it enables the achievement of a step-change in environmental conditions to compare the transient performance of both techniques.

However, this is inapplicable for rooftop mounted PV panels as they are unable to reproduce similar P-V curves due to the randomly fluctuating environmental conditions. Thus, the need of solar array simulators to replace actual PV panels arises. These are expensive instruments and not always affordable thus a simpler solution of simulating I-V and P-V curves similar in nature to those generated by a PV panel is presented in [61].

Hence, a simple low-cost PV simulating circuit is utilized which employs a resistor bank (R_s) in series with a DC power supply and the MPPT tracker (boost chopper) is connected at its output as shown in Appendix 3 fig. A.1(a). This circuit produces a P-V curve that exhibits a peak point for the tracker to lock on. Moreover, it simulates the PV source when exposed to sudden step change in irradiance. When the switch S is off, R_s becomes only one resistance of R value and this will give a certain P-V curve. However, when S is closed, R_s becomes in the form of two resistances in parallel ($R/2$) which will result in a step increase in the current I and in turn increases the power level, as shown in fig. A.1(b). MPPT is carried out by the first chopper stage which is followed by the second inverter stage to achieve coupling with the grid. Fig. A.1(a) shows the schematic diagram of the experimental rig while fig. A.1(d) shows the implemented test rig photography. The selection of the DC-link voltage to be 36V dc is performed for the experimental setup, similar to the procedure undertaken in the simulation section, based on acceptable THD in the grid current and reduced system loss as illustrated in Appendix 3 fig. A.2.

In the simulation section: the authors utilize 10 PV panels as the renewable energy source with the specifications listed in Appendix 1 Table I.

The grid voltage is single phase at 220V rms. The peak injected PV power is 10 panels*135W each = 1350 W. The DC-link voltage was tested for various values from 300V to 500V as illustrated in section V (Optimal DC-link voltage, fig. 4). It was proofed that the most adequate DC-link voltage value is at 360V from the grid current THD due to over-modulation avoidance. Hence the simulation results were performed at 360V DC-link as illustrated in Section IV (Simulation results, fig. 5 and fig. 6).

In the experimental validation section:

Due to experimental limitations, it was difficult to construct a roof-mounted system of 10 PV panels. Moreover, the proposed DC-link voltage sensorless technique needs to be attested during transient and steady-state conditions. For fair comparison with the conventional DC-link voltage control based technique, similar operating conditions must be ensured when both techniques
are implemented which is neither controllable nor guaranteed in the case of roof-mounted system as it is subject to unpredictable solar irradiance and temperature. Hence, the PV emulator, described in the Appendix 3.

The DC power supply, used in the PV emulator, capability is 28V 5A maximum. The constructed circuit runs the DC source at 28V where this voltage is equally distributed between the series power resistor and the DC/DC converter input. Hence the input to the MPPT tracker is 14V dc. A 22:220V single phase transformer is utilized as a grid interfacings for voltage lifting up.

The authors performed the experimental setup as 10:1 scaled version of the simulated one as illustrated in the following table:

<table>
<thead>
<tr>
<th>Source nature</th>
<th>Simulation parameters</th>
<th>Experimental parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 PV panels each is 135W at STC</td>
<td>PV emulator with 140W maximum power</td>
<td></td>
</tr>
<tr>
<td>Source simulated power</td>
<td>1350W, 713W, 983W</td>
<td>126W, 70W</td>
</tr>
<tr>
<td>Source power variation</td>
<td>Changing the irradiance level in the simulation file (impossible to guarantee similar performance experimentally)</td>
<td>Manual operated by-pass switch, decreasing the resistance in series with the DC source which consequently change the delivered power</td>
</tr>
<tr>
<td>DC/DC converter input voltage</td>
<td>180V dc</td>
<td>14V dc</td>
</tr>
<tr>
<td>DC/DC converter output voltage (input to VSI)</td>
<td>360V dc</td>
<td>36V dc</td>
</tr>
<tr>
<td>DC/AC inverter output rms voltage</td>
<td>220V (Directly connected to a 220V grid)</td>
<td>22V (connected to a 220V grid via 22:220V step up transformer)</td>
</tr>
</tbody>
</table>

Appendix 3 illustrates the actual parameters of both the simulation and the experimental setup.

Both techniques' practical results are presented and analysed at $V_{dc}=36$ V and under the two step-changes in the input power from the PV simulator (first from 70W to 126W, then from 126W to 70W).

Two step changes are applied to compare between the transient performances of both techniques. This can be explained as follows; during the two step changes, both the conventional and the proposed control techniques; are capable of extracting PV simulator maximum power at both power levels as shown in fig. 7 parts (a) and (b), and fig. 8 parts (a) and (b). However, the conventional scheme takes longer time to stabilize V_{dc} at 36V as demonstrated before. During the first step change (from low to high power level), the conventional scheme exhibits a V_{dc} increase to 41V (overshoot of 13.9%) then takes almost 1 s to stabilize V_{dc} at 36V. This causes a decrease in the grid power, during this transient period, of about 3% than its steady-state value at high power level (73W) as shown in fig. 7 (c). This transient decrease in grid power occurs in order to compensate for the converter loss in addition to C_{dc} losses as the transient V_{dc} increase to 41V. During the second step change (from high to low power level), the conventional technique experiences V_{dc} decrease to 32 V (undershoot of 11.11%) and takes almost 1.2 s to stabilize V_{dc} at 36V. This, in turn, increases the grid power, during this transient period, of about 2.5% than its steady-state value at low power level (44.4W) as shown in fig. 7(d). However, during this transient period, the grid current suffers from high $THDi$ beyond the acceptable limits (about 9%) due to the decrease of DC-link voltage to 32 V. On the other hand, during both step changes, the
proposed technique, immediately adjusts the DC voltage to its required value (36V) and sustains the grid power to its steady-state value during high power level (73W) and during low power level (44.5W) as shown in fig. 8 parts (c) and (d). During the second step-change, unlike the conventional technique, the proposed scheme exhibits transient grid current of 5.3% THD.

At steady-state, both schemes succeed in extracting PV simulator maximum power at low PV power level (70W) and at high PV power level (126W). At the grid side, the steady-state grid powers achieved by both techniques are similar during low grid power level (about 44.5W) as shown in fig. 7(e) and fig. 8(e); as well as at high grid power level (about 73W) as shown in fig. 8(f) and fig. 8(f). In addition, both schemes achieve near-unity power factor at both power levels and that their exhibited grid power oscillates around double the line frequency (100 Hz).

![Graphs showing power and voltage changes](image)

Fig. 7: Conventional technique performance: PV power; Grid voltage, current, and power at (a), (c): step change I and (b), (d): step change II, and steady-state grid voltage, current, and power at (e): low power level and (f): high power level

Fig. 8: Proposed technique performance: PV power; Grid voltage, current, and power at (a), (c): step change I and (b), (d): step change II, and steady-state grid voltage, current, and power at (e): low power level and (f): high power level
Fig. 7(g) and Fig. 8(g) show the DC-link voltage adjusted by both techniques at 36 V during both step-changes. During the first step-change, the conventional technique is slower to stabilize V_{dc} ($t_{settling}=1s$) and experiences an overshoot of about 5V (13.9%) which will increase the transient grid losses. During the second step-change, similarly, the conventional scheme shows poorer transient response with settling time of about 1.2s and V_{dc} undershoot of almost 4V (11.11%). The latter would affect $THDi$ during this transient period. On the other hand, the proposed technique shows fast transient response during both sudden changes.

For more clarification regarding the steady-state, fig. 9 illustrates a zooming on the system performance under the conventional and the proposed technique both tested at low and high power levels. It can be remarked that the proposed control technique succeeded in attaining the same steady-state performance of the conventional technique with the merit of being DC-link voltage sensorless control based.

![Steady-state at low power level](image)

![Steady-state at high power level](image)

Fig. 9: Steady state performance for the investigated system featuring V_g, I_g and P_g for:
(a, b) Conventional control technique (c, d) proposed control technique
VIII. Parameters’ Sensitivity Analysis

As the proposed technique is DC-link voltage sensorless based, to what extend the proposed technique is tolerant to system parameters’ variation is a critical issue to be investigated. This subsection investigates the system performance under measurement errors and system parameters variations for both conventional and proposed techniques.

A. Measurement error sensitivity analysis

In this subsection, eight simulation runs have been performed. At each simulation run, an error of 5% in the measurement of V_{pv}, I_{pv} and I_g is performed on-purposed in addition to another simulation run with the grid voltage distorted with 5th harmonic with 5% rms of the fundamental. Similar conditions were performed for the conventional DC-link control technique.

The DC-link voltage simulation results of both the conventional and the proposed techniques are compared in the following table with P_{pv} variations as follows: 1000 W/m2 from 0s to 6s, 600W/m2 from 6s to 9s, and 800 W/m2 from 9s to 12s.

| TABLE IV: Comparison between conventional and proposed techniques’ performance under signal measurement errors |
|--|--|
| **Normal case** | **Proposed technique** |
| ![Image](image1) | ![Image](image2) |
| ![Image](image3) | ![Image](image4) |
| ![Image](image5) | ![Image](image6) |
| ![Image](image7) | ![Image](image8) |
It can be noticed that the effect of the measurements’ error on the conventional technique is minimal, which was expected due to the dedicated DC-link voltage control loop.

The proposed technique, as it mainly depends on the empirical P_{pv}-I_{comp} relation, the deviation in V_{pv} and I_{pv} measurement causes an error in estimating the actual required compensating current which consequently leads to a deviation of the DC-link voltage from the desired value, 400V in the above simulated case. But the encouraging thing that the deviation from the DC-link reference does not exceed 25V from a 400V reference, hence less than 6.3% DC-link voltage error for a 5% deviation of the V_{pv} and I_{pv} measurement. Same results are obtained in case of I_{g} for 5% deviation measurement.

Referring to famous LEM® voltage/current sensors LV-25P [62] and LA-55P [63], the guaranteed maximum error in reading is 0.9% for the voltage and 0.65% for the current.

Although the carried simulations were performed with 5 times the guaranteed error in measurements sensor practical manufacturer data sheets, the maximum deviation of the DC-link voltage under the proposed sensorless technique is very
low, hence the effectiveness and tolerance of the proposed system against measurement deviations is validated by worst case scenarios rigorous simulation.

B. Converter parameters sensitivity analysis

In this section, three main factors that affect the inverter loss are varied from their nominal values to study their effect on the system performance. Those factors are: Output grid side inductor filter resistance, the DC-link capacitor ESR resistance, and the inverter MOSFET on-state resistance. The following table illustrates the simulation results:

| TABLE V: Comparison between conventional and proposed techniques' performance under converter parameters' variations |
|---|---|
| **Proposed technique** | **Conventional technique** |
| $R_f=0.04 \, \Omega$ | ![Graph](image1) |
| V_{dc} (V) | ![Graph](image2) |
| Time (s) | Time (s) |
| $R_f=0.2 \, \Omega$ | ![Graph](image3) |
| V_{dc} (V) | ![Graph](image4) |
| Time (s) | Time (s) |
| $ESR=0.2 \, \Omega$ | ![Graph](image5) |
| V_{dc} (V) | ![Graph](image6) |
| Time (s) | Time (s) |
A deep investigation of the presented results reveals several facts:

for the conventional technique: the effect of variation of the loss-responsible components is nearly unnoticeable. This result was expected basically due to the presence of dedicated DC-link voltage controller in the conventional technique.

for the proposed technique: the effect of variation of the loss-responsible components is relatively very limited. This result was basically unexpected due to the absence of dedicated DC-link voltage controller in the proposed technique.

Hence it needs better understanding why those element variation effect is minimal compared to that was recorded in the case of voltage/current measurement error as illustrated in the previous subsection.

The main reason that the effect of those parameters have is minimal on the system performance is that the investigated variables have very small values, hence their parameters’ variation effect on the loss estimation is very limited on the
contrary to the error in signals’ measurement which directly affects the proper determination of the compensating current which have higher impact on the system performance.

Therefore, the authors performed rigorous investigation, specially from manufacturer data sheets, to reveal the real variation of the above investigated parameters to avoid any inaccurate parameter values estimation.

Considering R_{on}, referring to ON Semiconductors® (formerly Fairchild®), considering the power rating of the system under investigation, one can utilize FCPF150N65F N-channel MOSFET 650V 24A [64], it was found that the on-state resistance is typically 0.133 Ω and increased by factor 1.7 at 100°C, reaching 0.22. In the investigated simulation, the authors vary R_{on} from 0.1 Ω to 0.5 Ω, i.e 5 times greater than the expected values from the manufacturer data sheet.

Considering R_f, referring to HAMMOND®, one can utilize 195G10 5mH 10A power inductor [65] as the VSI output filter, it was found that the inductor internal resistance is typically 0.04 Ω. In the investigated simulation, the authors vary R_f from 0.04 Ω to 0.2 Ω, i.e 5 times greater than the rated values from the manufacturer data sheet.

Considering **ESR**, referring to Cornell Dubilier CDE®, considering the power rating investigated, one can utilize 300μF 450V DC power capacitor [66] as the VSI DC-link capacitor, it was found that the capacitor ESR is typically 0.268 Ω. In the investigated simulation, the authors vary ESR from 0.2 Ω to 0.4 Ω, i.e 2 times greater than the rated values from the manufacturer data sheet.

As it can be concluded, the investigated parameters variations, even under the worst case scenarios, has minimal effect on the system performance under the proposed technique due to their relatively small contribution to loss compared to the higher influence occurred due to the measurement errors in voltage/current signals.
IX. Conclusion

This paper proposes an enhanced performance DC-link voltage sensorless control technique for the grid interface of single-phase two-stage PV converters. This new technique eliminates the need of an outer DC-link voltage control loop. Alternatively, a new reference grid current generation method is presented to transfer the PV power to the grid. Thus, power balance is achieved at the DC-link and DC voltage stabilizes at a predetermined level. Consequently, system implementation is simplified and the control scheme complexity is minimized. Furthermore, the absence of the DC-link high voltage sensor reduces the system footprint and cost. Although the proposed technique needs system training and mapping between PV power and system losses, yet the outer loop controller, in the conventional technique, must be precisely tuned to limit THDi. Simulation results of both schemes are analysed and compared. The proposed technique takes longer time to stabilize the DC-link bus voltage at operation start-up. However, once the required DC-link voltage is reached, it shows better transient response during sudden irradiance changes. At steady-state, both techniques give close results, which proves the feasibility of the proposed technique. Experimental results validate the proposed sensorless scheme effectiveness and show its superiority regarding the transient response concurrently with its similarity regarding steady-state performance when compared to conventional technique. TABLE VI lists a comparison between the proposed control technique with recent PV grid connected control schemes from recent references for more illustration on the presented performance benchmarks.
<table>
<thead>
<tr>
<th>References</th>
<th>Simulation/Experimental Work</th>
<th>System Configuration</th>
<th>Control Scheme</th>
<th>Power level</th>
<th>$f_{sw(i)}$</th>
<th>AC filter</th>
<th>THDi</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>[17]</td>
<td>Simulated System</td>
<td>Single-phase Single-stage grid-tied PV array (VSI)</td>
<td>Sensorless MPPT with PI DC voltage controller and PI grid current controller</td>
<td>2 kW (220V)</td>
<td>380V</td>
<td>20 kHz</td>
<td>L</td>
<td>95.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-phase Two-stage grid-tied PV array (boost chopper + VSI)</td>
<td>Voltage-sensorless One Cycle Control</td>
<td>2 kW (230V)</td>
<td>600V</td>
<td>20 kHz</td>
<td>L</td>
<td>95.5%</td>
</tr>
<tr>
<td>[29]</td>
<td>Experimental prototype</td>
<td>Single-phase Two-stage grid-tied PV array (ZVT interleaved boost chopper + VSI)</td>
<td>Voltage-sensorless One Cycle Control</td>
<td>205W (30V)</td>
<td>118V</td>
<td>20 kHz</td>
<td>L</td>
<td>3.38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-phase single-stage grid-tied PV array (VSI)</td>
<td>Voltage-sensorless One Cycle Control</td>
<td>4.5 kW (230V)</td>
<td>375-537 V</td>
<td>16 kHz</td>
<td>LC</td>
<td>98% for V_{dc} = 375 V</td>
</tr>
<tr>
<td>[31]</td>
<td>Simulated System</td>
<td>Single-phase single-stage grid-tied Agilent E4360A Solar Array Simulator</td>
<td>Grid current PI controller</td>
<td>3 kW (150V)</td>
<td>300V</td>
<td>10kHz</td>
<td>LCL</td>
<td>8%</td>
</tr>
<tr>
<td>[37]</td>
<td>Experimental prototype</td>
<td>Single-phase single-stage grid-tied PV array (proposed Inverter topology)</td>
<td>Grid current non ideal PR controller</td>
<td>150 W (230/15V)</td>
<td>40V</td>
<td>40 kHz</td>
<td>L</td>
<td>4.97%</td>
</tr>
<tr>
<td>[50]</td>
<td>Simulated Experimental prototype</td>
<td>Single-phase grid-tied PV inverter (VSI)</td>
<td>Grid current non ideal PR controller</td>
<td>1.5kW (220 V)</td>
<td>600V</td>
<td>15kHz</td>
<td>LCL</td>
<td>8%</td>
</tr>
<tr>
<td>[55]</td>
<td>Experimental prototype</td>
<td>Single-phase two-stage grid-tied PV system (Boost chopper + VSI)</td>
<td>Grid current PR integral (PRI) controller</td>
<td>3.2 kW (200V)</td>
<td>650V</td>
<td>10 kHz</td>
<td>LCL</td>
<td>1.5%</td>
</tr>
<tr>
<td>[56]</td>
<td>Simulated and Experimental prototype</td>
<td>Single-phase single-stage grid-tied PV array (VSI)</td>
<td>Grid current Optimal PR controller</td>
<td>150 W (220/22V)</td>
<td>36V</td>
<td>15kHz</td>
<td>L</td>
<td>5.3%</td>
</tr>
<tr>
<td>[58]</td>
<td>Experimental prototype</td>
<td>Three-phase single stage grid-tied PV emulator (Amrel SPS-800-12-D013), (VSI)</td>
<td>Grid current non ideal PR controller with modified harmonic compensator</td>
<td>1.5 kW (220V)</td>
<td>320V</td>
<td>15kHz</td>
<td>L</td>
<td>2%</td>
</tr>
<tr>
<td>Proposed</td>
<td>Simulated System</td>
<td>Single-phase Two stage grid-tied PV string (Boost Chopper + VSI)</td>
<td>Proposed sensorless technique with grid current ideal PR controller</td>
<td>150 W (220/22V)</td>
<td>36V</td>
<td>15kHz</td>
<td>L</td>
<td>5.3%</td>
</tr>
<tr>
<td></td>
<td>Proposed Experimental prototype</td>
<td>Single-phase Two stage grid-tied PV emulator (Boost Chopper + VSI)</td>
<td>Proposed sensorless technique with grid current ideal PR controller</td>
<td>1.5 kW (220V)</td>
<td>320V</td>
<td>15kHz</td>
<td>L</td>
<td>2%</td>
</tr>
</tbody>
</table>

where -------- not clarified in the corresponding reference.

* Due the bulky grid interfacing transformer impedance which does not exist in case of practical string PV system
Acknowledgment

The authors gratefully acknowledge both Renewable Energy and Power Electronics Applications (REPEA) research centre at the Arab Academy for Science and Technology (AAST), Egypt and Strathclyde University for collaborative work.
Appendix 1

A. Boost converter design

In this work, the applied step-up chopper is a single-switch boost converter [35]. It amplifies the PV input voltage level with a gain given as [36]:

\[G_{\text{boost}} = \frac{V_{o/p}}{V_{i/p}} = \frac{V_{dc}}{V_{PV}} = \frac{1}{1 - D_{\text{boost}}} \] \hspace{2cm}(A.1)

where \(V_{PV} \) is the PV string voltage, \(V_{dc} \) is the DC-link mean voltage and \(D_{\text{boost}} \) is the chopper duty ratio. The inductance of the boost converter (\(L_{\text{boost}} \)) is determined by selecting acceptable current ripple passing through it (\(\Delta I \)) from (A.2):

\[\Delta I = \frac{D_{\text{boost}}V_{PV}}{f_{\text{sw}(b)}L_{\text{boost}}} = \frac{D_{\text{boost}}(1 - D_{\text{boost}})V_{dc}}{f_{\text{sw}(b)}L_{\text{boost}}} \] \hspace{2cm}(A.2)

where \(f_{\text{sw}(b)} \) is the switching frequency of the boost converter.

B. Decoupling capacitor selection

The high voltage DC-link capacitor, which is the main limiting factor of the inverter lifetime, should be kept as small as possible and preferably substituted with film capacitors [8]. However, it must be properly sized, to limit DC-voltage ripples to a desired value in order to prevent over-voltages on the DC-bus and minimize power oscillations whose effect is reflected in the grid current. DC-link capacitor value is selected according to equation (A.3) neglecting converter losses [8, 37]:

\[C_{dc} = \frac{P_g}{\omega V_{dc} \Delta V_{dc(p-p)}} = \frac{P_g}{2\omega V_{dc} \Delta v_{dc}} \] \hspace{2cm}(A.3)

where \(P_g \) is the average active power injected into the grid, \(\omega \) is the line angular frequency in rad/s, \(\Delta v_{dc(p-p)} \) is the peak to peak DC-link voltage ripple and \(\Delta v_{dc} \) is the amplitude of the DC-link voltage ripple.

C. Full Bridge VSI

The second stage involves a current controlled full-bridge single-phase VSI operating with sinusoidal pulse width modulation (SPWM) featuring carrier frequency of 15 kHz. The inverter output filter inductor (\(L_{ac} \)) is designed so as to limit the magnitude of the switching harmonics in grid current. For high switching frequency and near-unity power factor operation, the inverter output voltage is approximately equal to the grid voltage and the modulation index amplitude (\(m_a \)) is given by [38, 39]:

\[m_a = \frac{V_g}{V_{dc}} \] \hspace{2cm}(A.4)

where \(V_g \) is the grid voltage amplitude.

For single-phase inverters, \(V_{dc} \) level is determined such that \(m_a \leq 1 \) so as to achieve acceptable total harmonic distortion in the grid current (\(\text{THDi} \)) [38]. Hence, \(L_{ac} \) is calculated from (A.5) as follows [39, 40]:

\[L_{ac} = \frac{1}{\omega^2 V_{dc}^2 (1 - m_a^2)} \]
\[\Delta I_g = \frac{V_{dc}}{2f_{sw(i)}I_{ac}} \frac{1}{2\sqrt{3}} \sqrt{\frac{1}{2}m_a^2 - \frac{8}{3\pi}m_a^3 + \frac{3}{8}m_a^4} \]

(A.5)

where \(\Delta I_g \) is the rms ripple component of the grid current and \(f_{sw(i)} \) is the switching frequency of the inverter. \(\Delta I_g \) can be calculated from (A.6) [39]:

\[THDi = \frac{\Delta I_g}{I_{g(1)}} \times 100 \leq THDi \text{ (required)} \]

(A.6)

where \(I_{g(1)} \) is the rms value of fundamental frequency component of the grid current.

TABLE I. KD135SX_UPU MODULE SPECIFICATIONS AT 25°C, 1000 W/M²

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Short Circuit Current</td>
<td>(I_{SCa})</td>
</tr>
<tr>
<td>Nominal Open Circuit Voltage</td>
<td>(V_{OCo})</td>
</tr>
<tr>
<td>Maximum Power Current</td>
<td>(I_{MPP})</td>
</tr>
<tr>
<td>Maximum Power Voltage</td>
<td>(V_{MPP})</td>
</tr>
<tr>
<td>Maximum Output Power</td>
<td>(P_{max})</td>
</tr>
<tr>
<td>Current /Temp. Coefficient</td>
<td>(K_i)</td>
</tr>
<tr>
<td>Voltage/Temp. Coefficient</td>
<td>(K_v)</td>
</tr>
<tr>
<td>Number of Series Cells</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2

DC-link voltage and grid current controllers design procedure

For the conventional technique:
The conventional technique features a DC-link voltage controller, basically Proportional-Integral (PI), which is optimized for enhanced performance.

The system runs with K_p only presented by small value with Zero integral part. The value of K_p gradually increases till a sustained oscillation in the V_{dc} is noticed. The corresponding critical gain $K_{p\text{-critical}}$ and oscillating period $T_{critical}$ are recorded. Famous Ziegler - Nichols PID tuning table is utilized for obtaining the utilized PI parameters. For more enhanced performance, a new added block in the Matlab/Simulink R2014 environment which is PID controller with auto-tuning and anti wind-up features is utilized to evaluate the final DC-link voltage PI parameters. Those parameters are used in the experimental setup by means of the embedded code generator library C2000 for the implemented DSP TMS320F28335. Hence, parameters optimization is ensured in both simulation and experimental results. The following figure illustrates the DC-link voltage controller parameters’ tuning process.

For the proposed technique:
The proposed technique features only a conventional Grid current Proportional-Integral controller similar to that utilized in the conventional technique. The DC-link voltage stabilization is achieved naturally when the converter fulfills the adequate required power balance as illustrated in the manuscript.

The following table lists the parameters for the designed grid current PR and DC-link voltage PI controllers respectively.

<table>
<thead>
<tr>
<th></th>
<th>Conventional technique</th>
<th>Proposed technique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_p</td>
<td>K_i</td>
</tr>
<tr>
<td>DC-link voltage PI controller</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>Grid current PR controller</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Start simulation with $K_p=0.001$
While the integral part is zero

Increment K_p until V_{dc} shows sustained oscillations

hence K_p critical is reached, record the oscillation period $T_{critical}$

PID Control: Ziegler Nichols Tuning

<table>
<thead>
<tr>
<th>Controller</th>
<th>K_c</th>
<th>T_1</th>
<th>T_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Controller</td>
<td>$\frac{1}{T_p}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PI Controller</td>
<td>0.9 $\frac{1}{T_p}$</td>
<td>2.33 T_1</td>
<td>-</td>
</tr>
<tr>
<td>PID Controller</td>
<td>1.2 $\frac{1}{T_p}$</td>
<td>2.0 T_1</td>
<td>0.5 T_1</td>
</tr>
</tbody>
</table>

Start auto-tune process

Start simulation with final auto-tuned controller variables

Utilize in the embedded C2000 library for DSP programming in experimental implementation
Appendix 3

Experimental setup details

A.1: Experimental validation (a) experimental system configuration, (b) P-V, I-V curves of PV experimental emulating circuit for two different values of R_s, (c) P_{PV} vs I_{comp} experimental mapping for various DC link voltage values, and (d) test rig photography

A.2: Experimental comparison between conventional and proposed scheme at various DC-link voltage levels regarding (a) THD of grid current, (b) system power losses as percentage of the current PV power level.
A.3: Simulated system configuration

Online: http://www.lem.com/docs/products/la_55-p_e.pdf

Online: http://www.mouser.com/ds/2/149/FCPF150N65FL1-610990.pdf

Online: http://www.mouser.com/ds/2/177/S0034-44711.pdf