Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Towards 10 Gb/s OFDM-based visible light communication using a GaN violet micro-LED

Islim, Mohamed Sufyan and Ferreira, Ricardo X. and He, Xiangyu and Xie, Enyuan and Videv, Stefan and Viola, Shaun and Watson, Scott and Bamiedakis, Nikolaos and Penty, Richard V. and White, Ian H. and Kelly, Anthony E. and Gu, Erdan and Haas, Harald and Dawson, Martin D. (2017) Towards 10 Gb/s OFDM-based visible light communication using a GaN violet micro-LED. Photonics Research, 5 (2). A35-A43. ISSN 2327-9125

[img]
Preview
Text (Islim-etal-PR-2017-visible-light-communication-using-a-GaN-violet-micro-LED)
Islim_etal_PR_2017_visible_light_communication_using_a_GaN_violet_micro_LED.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Visible light communication (VLC) is a promising solution to the increasing demands for wireless connectivity. Micro-sized Gallium Nitride (GaN) light emitting diodes (mirco-LEDs) are strong candidates for VLC due to their high bandwidths. Segmented violet mirco-LEDs are reported in this work with electrical-to-optical bandwidths up to 655 MHz. An orthogonal frequency division multiplexing (OFDM) based VLC system with adaptive bit and energy loading is demonstrated and a data transmission rate of 11.95 Gb/s is achieved with a violet mirco-LED, when the nonlinear distortion of the mirco-LED is the dominant noise source of the VLC system. A record 7.91 Gb/s data transmission rate is reported below the forward error correction threshold using a single pixel of the segmented array when all the noise sources of the VLC system are present.